首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   875篇
  免费   168篇
  国内免费   367篇
测绘学   6篇
大气科学   605篇
地球物理   274篇
地质学   176篇
海洋学   44篇
天文学   130篇
综合类   21篇
自然地理   154篇
  2024年   6篇
  2023年   26篇
  2022年   9篇
  2021年   15篇
  2020年   35篇
  2019年   50篇
  2018年   27篇
  2017年   31篇
  2016年   33篇
  2015年   41篇
  2014年   43篇
  2013年   79篇
  2012年   38篇
  2011年   52篇
  2010年   37篇
  2009年   60篇
  2008年   58篇
  2007年   91篇
  2006年   65篇
  2005年   75篇
  2004年   56篇
  2003年   63篇
  2002年   47篇
  2001年   36篇
  2000年   54篇
  1999年   46篇
  1998年   45篇
  1997年   31篇
  1996年   33篇
  1995年   17篇
  1994年   24篇
  1993年   20篇
  1992年   10篇
  1991年   12篇
  1990年   3篇
  1989年   10篇
  1988年   12篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1410条查询结果,搜索用时 31 毫秒
121.
The transfer processes within and above a simulated urban street canyon were investigated in a generic manner. Computational fluid dynamics (CFD) was used to aid understanding and to produce some simple operational parameterisations. In this study we addressed specifically the commonly met situation where buoyancy effects arising from elevated surface temperatures are not important, i.e. when mechanical forces outweigh buoyancy forces. In a geophysical context this requires that some suitably defined Richardson number is small. From an engineering perspective this is interpreted as the important case when heat transfer within and above urban street canyons is by forced convection. Surprisingly, this particular scenario (for which the heat transfer coefficient between buildings and the flow is largest), has been less well studied than the situation where buoyancy effects are important. The CFD technique was compared against wind-tunnel experiments to provide model evaluation. The height-to-width ratio of the canyon was varied through the range 0.5–5 and the flow was normal to the canyon axis. By setting the canyon’s facets to have the same or different temperatures or to have a partial temperature distribution, simulations were carried out to investigate: (a) the influence of geometry on the flow and mixing within the canyon and (b) the exchange processes within the canyon and across the canyon top interface. Results showed that the vortex-type circulation and turbulence developed within the canyon produced a temperature distribution that was, essentially, spatially uniform (apart from a relatively thin near-wall thermal boundary layer) This allowed the temperatures within the street canyon to be specified by just one value T can , the canyon temperature. The variation of T can with wind speed, surface temperatures and geometry was extensively studied. Finally, the exchange velocity u E across the interface between the canyon and the flow above was calculated based on a heat flux balance within the canyon and between the canyon and the flow above. Results showed that u E was approximately 1% of a characteristic wind velocity above the street canyon. The problem of radiative exchange is not addressed but it can, of course, be introduced analytically, or computationally, when necessary.  相似文献   
122.
123.
We consider the kinematic production of magnetic fields in a sphere by velocity fields dominated by differential rotation and spiralling convective cells. The high magnetic Reynolds number limit of Braginsky (1964) is considered and formulae are derived allowing an α-effect parametrization of such flows to be easily calculated. This permits an axisymmetric system to be investigated in parallel with the direct 3-D numerical computations. Good agreement between the asymptotic and 3-D calculations is found. The 'spiralling' property typical of convective motion in rotating spheres is important in terms of dynamo action; the differential rotation coexisting with this feature is also vital. Indeed, it is the presence of both features which allows the analysis of Braginsky to be employed. With flows approximating the columnar form anticipated for rapidly rotating convection, dynamo action is relatively easily achieved for all azimuthal wavenumbers; modes of differing wavenumbers interact almost by a simple superposition. With flows of more complex latitudinal form, the mutual interactions between modes become more complicated. For columnar-type flows, dipole magnetic fields are favoured when the sense of outward spiralling is prograde and the zonal flow is eastwards, as is physically preferred.  相似文献   
124.
Substorm-associated radar auroral surges (SARAS) are a short lived (15–90 minutes) and spatially localised (5° of latitude) perturbation of the plasma convection pattern observed within the auroral E-region. The understanding of such phenomena has important ramifications for the investigation of the larger scale plasma convection and ultimately the coupling of the solar wind, magnetosphere and ionosphere system. A statistical investigation is undertaken of SARAS, observed by the Sweden And Britain Radar Experiment (SABRE), in order to provide a more extensive examination of the local time occurrence and propagation characteristics of the events. The statistical analysis has determined a local time occurrence of observations between 1420 MLT and 2200 MLT with a maximum occurrence centred around 1700 MLT. The propagation velocity of the SARAS feature through the SABRE field of view was found to be predominately L-shell aligned with a velocity centred around 1750 ms–1 and within the range 500 m s–1 and 3500 m s–1. This comprehensive examination of the SARAS provides the opportunity to discuss, qualitatively, a possible generation mechanism for SARAS based on a proposed model for the production of a similar phenomenon referred to as sub-auroral ion drifts (SAIDs). The results of the comparison suggests that SARAS may result from a similar geophysical mechanism to that which produces SAID events, but probably occurs at a different time in the evolution of the event.  相似文献   
125.
 The rates of passive degassing from volcanoes are investigated by modelling the convective overturn of dense degassed and less dense gas-rich magmas in a vertical conduit linking a shallow degassing zone with a deep magma chamber. Laboratory experiments are used to constrain our theoretical model of the overturn rate and to elaborate on the model of this process presented by Kazahaya et al. (1994). We also introduce the effects of a CO2–saturated deep chamber and adiabatic cooling of ascending magma. We find that overturn occurs by concentric flow of the magmas along the conduit, although the details of the flow depend on the magmas' viscosity ratio. Where convective overturn limits the supply of gas-rich magma, then the gas emission rate is proportional to the flow rate of the overturning magmas (proportional to the density difference driving convection, the conduit radius to the fourth power, and inversely proportional to the degassed magma viscosity) and the mass fraction of water that is degassed. Efficient degassing enhances the density difference but increases the magma viscosity, and this dampens convection. Two degassing volcanoes were modelled. At Stromboli, assuming a 2 km deep, 30% crystalline basaltic chamber, containing 0.5 wt.% dissolved water, the ∼700 kg s–1 magmatic water flux can be modelled with a 4–10 m radius conduit, degassing 20–100% of the available water and all of the 1 to 4 vol.% CO2 chamber gas. At Mount St. Helens in June 1980, assuming a 7 km deep, 39% crystalline dacitic chamber, containing 4.6 wt.% dissolved water, the ∼500 kg s–1 magmatic water flux can be modelled with a 22–60 m radius conduit, degassing ∼2–90% of the available water and all of the 0.1 to 3 vol.% CO2 chamber gas. The range of these results is consistent with previous models and observations. Convection driven by degassing provides a plausible mechanism for transferring volatiles from deep magma chambers to the atmosphere, and it can explain the gas fluxes measured at many persistently active volcanoes. Received: 26 September 1997 / Accepted: 11 July 1998  相似文献   
126.
The drift velocity of an auroral arc is compared with the component of F-region plasma velocity in the same direction for ten cases where the arc is seen to move steadily equatorward for several minutes without any major change in appearance or orientation. In most cases the two velocities are close, but on two occasions the drift velocity of the arc is much higher than the plasma velocity. From the cases studied it appears that during the growth and recovery phase of the substorm cycle the arc moves with a velocity close to the convection velocity, but during the expansion phase this is not the case.  相似文献   
127.
地幔对流及其对地壳表层拉张盆地的影响   总被引:4,自引:0,他引:4  
回顾近十年来在地幔对流方面的最新研究进展,阐述了板块俯冲后在地幔中的演化特征,以及地幔上升流即地幔柱的驱动机制和地质效应。特别介绍了地幔柱对地壳表层拉张盆地形成和充填过程的影响。进一步探讨了地幔柱活动在济阳坳陷的地质表现及其引发的火山岩浆活动、碎屑充填特征。认为盆地演化的阶段性间接反映了地幔对流的阶段性。  相似文献   
128.
129.
Geothermal resource assessment is the broadly based appraisal of the quantities of heat that might be extracted from the earth and used economically at some reasonable future time. In the United States, the Geological Survey is responsible for preparing geothermal assessments based on the best available data and interpretations. Updates are required every few years owing to increasing knowledge, enlarging data base, improving technology, and changing economics. Because geothermal understanding is incomplete and rapidly evolving, the USGS complements its assessments with a broad program of geothermal research that includes (1) study of geothermal processes on crustal and local scales, (2) regional evaluations, (3) intensive study of type systems before and during exploitation (4) improvement of exploration techniques, and (5) investigation of geoenvironmental constraints.  相似文献   
130.
Seasonal variability regarding the nature of precipitation and the activity of cumulus convection during the 1991 Meiyu season of Changjiang-Huaihe River Basin(Jianghuai)has been investigated by calculating apparent heat source/apparent moisture sink and analyzing TBB(cloud-top blackody radiation temperature)data.It is found that three periods of strong ascending motion during the Meiyu season lead to three episodes of heavy rain,and the latent heat due to the precipitation is of the sole heat source of the atmosphere.The nature of precipitation shows distinct seasonal variability,from frontal precipitation of the first episode to the extremely strong convective precipitation of the third episode.TBB field of East Asia may well reflect not only the intensity of convection and rainfall,but also the movement of rain belt and convection belt.In the whole Meiyu season.convection belt mainly stays in Jianghuai.but may shift within the domain of East Asia.Its locating in Jianghuai or not determines the maintenance or break of Meiyu.In the third episode,the narrow convection belt over Jianghuai is mainly caused by southwest monsoon which takes moist and convective atmosphere from tropical ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号