首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   37篇
  国内免费   15篇
测绘学   10篇
大气科学   12篇
地球物理   124篇
地质学   28篇
海洋学   11篇
天文学   1篇
综合类   2篇
自然地理   13篇
  2019年   3篇
  2018年   11篇
  2017年   10篇
  2016年   8篇
  2015年   14篇
  2014年   10篇
  2013年   17篇
  2012年   5篇
  2011年   7篇
  2010年   10篇
  2009年   6篇
  2008年   10篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   10篇
  2003年   9篇
  2002年   14篇
  2001年   10篇
  2000年   12篇
  1999年   8篇
  1997年   8篇
  1996年   2篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
51.
调制模式、调制比预报方法应用朔望潮的理论依据   总被引:4,自引:0,他引:4  
朔望潮触发和调制地震的发生已是一个基本事实,朔望潮即是半月潮幅度最大时段再迭加半日潮和全日潮。由于朔望潮量值大,所以它作用到震源系统上影响震源过程的7种效应也大,因而朔望潮与地震的相关性较好。由此作者认为用朔望潮比单纯用半日潮来判断震源过程的不稳定性更好,它可以回避震源地方的很多复杂问题而不影响预报地震的效能。  相似文献   
52.
In semi‐arid environments, the characteristics of the land surface determine how rainfall is transformed into surface runoff and influences how this runoff moves from the hillslopes into river channels. Whether or not water reaches the river channel is determined by the hydrological connectivity. This paper uses a numerical experiment‐based approach to systematically assess the effects of slope length, gradient, flow path convergence, infiltration rates and vegetation patterns on the generation and connectivity of runoff. The experiments were performed with the Connectivity of Runoff Model, 2D version distributed, physically based, hydrological model. The experiments presented are set within a semi‐arid environment, characteristic of south‐eastern Spain, which is subject to low frequency high rainfall intensity storm events. As a result, the dominant hydrological processes are infiltration excess runoff generation and surface flow dynamics. The results from the modelling experiments demonstrate that three surface factors are important in determining the form of the discharge hydrograph: the slope length, the slope gradient and the infiltration characteristics at the hillslope‐channel connection. These factors are all related to the time required for generated runoff to reach an efficient flow channel, because once in this channel, the transmission losses significantly decrease. Because these factors are distributed across the landscape, they have a fundamental role in controlling the landscape hydrological response to storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
53.
The stable isotopic (2H/1H and 18O/16O) composition of precipitation has been used for a variety of hydrological and paleoclimate studies, a starting point for which is the behaviour of stable isotopes in modern precipitation. To this end, daily precipitation samples were collected over a 7‐year period (2008–2014) at a semi‐arid site located at the Macquarie Marshes, New South Wales (Australia). The samples were analysed for stable isotope composition, and factors affecting the isotopic variability were investigated. The best correlation between δ 18O of precipitation was with local surface relative humidity. The reduced major axis precipitation weighted local meteoric water line was δ 2H = 7.20 δ 18O + 9.1. The lower slope and intercept (when compared with the Global Meteoric Water Line) are typical for a warm dry climate, where subcloud evaporation of raindrops is experienced. A previously published model to estimate the degree of subcloud evaporation and the subsequent isotopic modification of raindrops was enhanced to include the vertical temperature and humidity profile. The modelled results for raindrops of 1.0 mm radius showed that on average, the measured D‐excess (=δ 2H ? 8 δ 18O) was 19.8‰ lower than that at the base of the cloud, and 18% of the moisture was evaporated before ground level (smaller effects were modelled for larger raindrops). After estimating the isotopic signature at the base of the cloud, a number of data points still plotted below the global meteoric water line, suggesting that some of the moisture was sourced from previously evaporated water. Back trajectory analysis estimated that 38% of the moisture was sourced over land. Precipitation samples for which a larger proportion of the moisture was sourced over land were 18O and 2H‐enriched in comparison to samples for which the majority of the moisture was sourced over the ocean. The most common weather systems resulting in precipitation were inland trough systems; however, only East Coast Lows contributed to a significant difference in the isotopic values. Copyright © 2016 Australian Nuclear Science and Technology Organisation. Hydrological Processes. © 2016 John Wiley & Sons, Ltd.  相似文献   
54.
Rivers and aquifers are, in many cases, a connected resource and as such the interactions between them need to be understood and quantified for the resource to be managed appropriately. The objective of this paper is to advance the understanding of river–aquifer interactions processes in semi‐arid environments stressed by groundwater abstraction. This is performed using data from a specific catchment where records of precipitation, evapotranspiration, river flow, groundwater levels and groundwater abstraction are analysed using basic statistics, hydrograph analysis and a simple mathematical model to determine the processes causing the spatial and temporal changes in river–aquifer interactions. This combined approach provides a novel but simple methodology to analyse river–aquifer interactions, which can be applied to catchments worldwide. The analysis revealed that the groundwater levels have declined (~ 3 m) since the onset of groundwater abstraction. The decline is predominantly due to the abstraction rather than climatic changes (r = 0.84 for the relationship between groundwater abstraction and groundwater levels; r = 0.92 for the relationship between decline in groundwater levels and magnitude of seasonal drawdown). It is then demonstrated that, since the onset of abstraction, the river has changed from being gaining to losing during low‐flow periods, defined as periods with flow less than 0.5, 1.0 or 1.5 GL/day (1 GL/day = 1 × 106 m3/day). If defined as < 1.0 GL/day, low‐flow periods constitute approximately 65% of the river flows; the periods where the river is losing at low‐flow conditions are thus significant. Importantly, there was a significant delay (> 10 years) between the onset of groundwater abstraction and the changeover from gaining to losing conditions. Finally, a relationship between the groundwater gradient towards the river and the river flow at low‐flow is demonstrated. The results have important implications for water management as well as water ecology and quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
55.
Scarcity of hydrological data, especially streamflow discharge and groundwater level series, restricts the understanding of channel transmission losses (TL) in drylands. Furthermore, the lack of information on spatial river dynamics encompasses high uncertainty on TL analysis in large rivers. The objective of this study was to combine the information from streamflow and groundwater level series with multi‐temporal satellite data to derive a hydrological concept of TL for a reach of the Middle Jaguaribe River (MJR) in semi‐arid north‐eastern Brazil. Based on this analysis, we proposed strategies for its modelling and simulation. TL take place in an alluvium, where river and groundwater can be considered to be hydraulically connected. Most losses certainly infiltrated only through streambed and levees and not through the flood plains, as could be shown by satellite image analysis. TL events whose input river flows were smaller than a threshold did not reach the outlet of the MJR. TL events whose input flows were higher than this threshold reached the outlet losing on average 30% of their input. During the dry seasons (DS) and at the beginning of rainy seasons (DS/BRS), no river flow is expected for pre‐events, and events have vertical infiltration into the alluvium. At the middle and the end of the rainy seasons (MRS/ERS), river flow sustained by base flow occurs before/after events, and lateral infiltration into the alluvium plays a major role. Thus, the MJR shifts from being a losing river at DS/BRS to become a losing/gaining (mostly losing) river at MRS/ERS. A model of this system has to include the coupling of river and groundwater flow processes linked by a leakage approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
56.
浅层顶管施工引起的土体移动   总被引:3,自引:2,他引:3  
顶管施工引起包括地面沉降和土的轴向移动在内的土的运动。 土的这些运动可能导致邻近构筑物和管线的损坏。 理论分析和现场实测都显示, 在类似于上海等地的软土地层中顶管施工, 顶管周围土的运动问题是三维的。 基于半解析数值方法的基本原理, 将轴向离散而在径向和环向选取位移函数, 构造了解析解函数。 给出了包括位移函数、刚度矩阵和荷载矩阵在内的理论分析过程, 从而建立了半解析单元法。 利用半解析单元法将顶管施工中三维土运动问题转化成一维数值计算 。 利用所建立的半解析单元法, 就软土地层中顶管工程实例计算了施工所引起的土体位移。 结果表明, 半解析元法用于计算顶管施工中顶管周围土的移动, 可以得到较为满意的结果。 由于计算所需要的单元数减少, 处理该问题所需要的时间也明显减少。 根据分析与计算结果还得到了一些有价值的结论。  相似文献   
57.
Geomorphologists have to make choices and compromises, as acquisition techniques of geometrical information are numerous, depending on the specific complexity of the targeted three‐dimensional objects and the requirements of the end user. This article presents the methodology and the results over a well known and documented site. This ready‐to‐use, low‐altitude, aerial photo methodology reveals itself to be a satisfying compromise between cost, accuracy and difficulty of implementation. The selected equipment package is light enough to enable a quick reaction to unexpected events and the tools and methods are competitive with field acquisition techniques. An evaluation has demonstrated a sub‐metric accuracy for the final result. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
58.
Eight runoff plots, located within a small catchment within the Walnut Gulch Experimental Watershed, southern Arizona, were constructed to test the argument that sediment yield (kg m?2) decreases as plot length increases. The plots ranged in length from 2 m to 27·78 m. Runoff and sediment loss from these plots were obtained for ten natural storm events. The pattern of sediment yield from these plots conforms to the case in which sediment yield first increases as plot length increases, but then subsequently decreases. Data from the present experiment indicate that maximum sediment yield would occur from a plot 7 m long. Analysis of both runoff and sediment yield from the plots indicates that the relationship of sediment yield to plot length derives both from the limited travel distance of individual entrained particles and from a decline in runoff coefficient as plot length increases. Particle‐size analysis of eroded sediment confirms the role of travel distance in controlling sediment yield. Whether in response to the finite travel distance of entrained particles or the relationship of runoff coefficient to plot length, the experiment clearly demonstrates that the erosion rates for hillslopes and catchments cannot be simply extrapolated from plot measurements, and that alternative methods for estimating large‐area erosion rates are required. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
59.
Projected changes in rainfall seasonality and interannual variability are expected to have severe impacts on arid and semi‐arid tropical vegetation, which is characterized by a fine‐tuned adaptation to extreme rainfall seasonality. To study the response of these ecosystems and the related changes in hydrological processes to changes in the amount and seasonality of rainfall, we focused on the caatinga biome, the typical seasonally dry forest in semi‐arid Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analysed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) data for hydrological years 2000 to 2014. Rainfall seasonal and interannual statistics were characterized by recently proposed metrics describing duration, timing and intensity of the wet season and compared to similar metrics of NDVI time series. The results show that the caatinga tends to have a more stable response with longer and less variable growing seasons (3.1 ± 0.1 months) compared to the duration wet seasons (2.0 ± 0.5 months). The ecosystem ability to buffer the interannual variability of rainfall is also evidenced by the stability in the timing of the growing season compared to the wet season, which results in variable delays (ranging from 0 to 2 months) between the peak of the rainfall season and the production of leaves by the ecosystem. The analyses show that the shape and size of the related hysteresis loops in the rainfall–NDVI relations are linked to the buffering effects of soil moisture and plant growth dynamics. Finally, model projections of vegetation response to different rainfall scenarios reveal the existence of a maximum in ecosystem productivity at intermediate levels of rainfall seasonality, suggesting a possible trade‐off in the effects of intensity (i.e. amount) and duration of the wet season on vegetation growth and related soil moisture dynamics and transpiration rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
60.
Semi‐active variable stiffness resettable devices can reduce seismic demands and damages in structures. Despite their advantages, variable stiffness resettable devices are under‐utilized mainly because of the shortage of fundamental research in quantifying the sensitivity of key seismic response parameters, and losses, in structures that use such systems for seismic hazard mitigation. Within this setting, the research summarized herein measures the effectiveness of semi‐active resettable energy dissipating devices in the Single‐Degree‐of‐Freedom domain aiming at quantifying the sensitivity of their seismic response to variation in control parameters and generating the required knowledge to utilize such semi‐active devices in the Multi‐Degree‐of‐Freedom domain. The performance (i.e. maximum relative displacement and peak absolute acceleration demands) of Single‐Degree‐of‐Freedom systems with an array of semi‐active control logics under various dynamic excitation regimes is studied. Two sets of 40 ground motions representing various seismic loading conditions (i.e. pulse‐like and rock‐site ground motions) are used, and an efficient control logic for mitigating these seismic demands is proposed. Numerical results show that proposed control logic enables a decrease of 40–60% for both maximum relative displacement and seismic base shear and 15–25% decrease for peak absolute acceleration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号