首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   37篇
  国内免费   74篇
大气科学   178篇
地球物理   34篇
地质学   12篇
海洋学   15篇
天文学   1篇
综合类   9篇
自然地理   3篇
  2024年   2篇
  2023年   11篇
  2022年   7篇
  2021年   4篇
  2020年   7篇
  2019年   14篇
  2018年   9篇
  2017年   7篇
  2016年   9篇
  2015年   9篇
  2014年   7篇
  2013年   20篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   11篇
  2006年   10篇
  2005年   8篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   7篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1996年   9篇
  1995年   10篇
  1994年   11篇
  1993年   5篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有252条查询结果,搜索用时 187 毫秒
111.
Ozone chemistry processes are analyzed during a cumulus cloud process with the model(1CCCM)described in Part Ⅰ.The simulation results show that entire cumulus cloud process can bewell described with the development of vertical velocities and liquid water content which are the twomost outstanding features of cumulus clouds.Ozone chemistry is strongly influenced by cumulusclouds.NO_x can be transported upwards above 4 km in the first 20 minutes of the convection eventand form a relative higher concentration area which enhances the production of ozone.Two areas ap-pear during the convection event:area of net ozone production and area of net ozone depletion.Thearea of ozone depletion coincides with the area of liquid water within cloud.Results show that theaqueous phase(cloud water and rainwater)can alter gas ozone level through two ways:one is scav-enging free radicals(HO_2)from the gas phase and thereby inhibiting the reactions of transformationto NO_2 from NO,which results in reduction of the gas source of ozone;the other is aqueous phasechemical reactions which consume ozone in the aqueous phase.Calculations reveal that the reaction O_3+OH→HO_2 is the main pathway of ozone depletion in gas phase during the process of cumulusclouds.  相似文献   
112.
Rain Drop Size Distribution (DSD) is one of the key parameters to micro physical process and macro dynamical structure of precipitation. It provides useful information for understanding the mechanisms of precipitation formation and development. Conventional measurement techniques include momentum method, flour method, filtering paper, raindrop camera and immersion method. In general, the techniques havelarge measurement error, heavy workload, and low efficiency. Innovation of disdrometer is a remarkable progress in DSD observation. To date, the major techniques are classified into impacting, optical and acoustic disdrometers, which are automated and more convenient and accurate. The impacting disdrometer transforms the momentum of raindrops into electric impulse, which are easy to operate and quality assured but with large errors for extremely large or small raindrops. The optical disdrometer measures rainfall diameter and its velocity in the same time, but cannot distinguish the particles passing through sampling area simultaneously. The acoustic disdrometer determines DSD from the raindrop impacts on water body with a high temporal resolution but easily affected by wind. In addition, the Doppler can provide DSD with polarimetric techniques for large area while it is affected by updrafts, downdrafts and horizontal winds.DSD has meteorological features, which can be described with the Marshall Palmer (M-P), the Gamma, the lognormal or the normalized models. The M P model is suitable for steady rainfall, usually used for weak and moderate rainfall. The gamma model is proposed for DSD at high rain rate. The lognormal model is widely applied for cloud droplet analysis, but not appropriate for DSD with a broad spectrum. The normalized model is free of assumptions about the shape of the DSD. For practical application, statistical comparison is necessary for selection of a most suitable model. Meteorologically, convective rain has a relatively narrow and smooth DSD spectrum usually described by the M P model. Stratiform rain has a broad DSD spectrum described with the Gamma model. Stratocumulus mixed rain has relatively large drop diameter but small mean size usually described by the Gamma model. The continent rainfall is altitude dependent and it differs from the maritime cloud rainfalls in terms of rain rate and drop diameter. Overall, the meteorological features are useful to improve our understanding of precipitation formation but also important to development of precipitation retrieval techniques with a high accuracy.  相似文献   
113.
Abstract

Rainfall simulators have often been used to mimic natural rainfall for studies of various land-surface and water interaction processes. The characteristics of the simulated rainfall are the main indicators used to judge the performance of the rainfall simulators. The aim of this study is to investigate the potential of piezoelectric transducers for measuring and evaluating a dripper-type simulated rainfall drop-size distribution (DSD) and kinetic energy (KE). The directly measured KE was significantly correlated with the estimated KE using the drop-size distribution and empirical rain drop fall velocity relationships. This result emphasizes the potential use of the piezoelectric sensor to directly measure and evaluate rainfall kinetic energy. Also, the relationship between rainfall intensity and KE showed good patterns of agreement between simulated rainfall and natural rainfall.

Citation Abd Elbasit, M. A. M., Yasuda, H. & Salmi, A. (2011) Application of piezoelectric transducers in simulated rainfall erosivity assessment. Hydrol. Sci. J. 56(1), 187–194.  相似文献   
114.
Abstract

The aim of this study was to evaluate canopy water storage (CWS) of the co-dominant shrubs in the revegetation of sand dunes in northwest China. Our results indicated that CWS differed among the xerophyte taxa studied. The average CWS increased exponentially with decreased raindrop size. The time course of CWS in terms of leaf area indicated that Artemisia ordosica attains its peak value of 0.48 mm within 170 min. The corresponding values for Caragana korshinskii and Hedysarum scoparium were 0.38 mm and 178 min, and 0.32 mm and 161 min, respectively, implying that A. ordosica had a higher CWS than C. korshinskii and H. scoparium. Dry biomass was a desirable predictor for estimation of CWS for C. korshinskii and H. scoparium, and shrub volume for A. ordosica. Our results show that the dependence of CWS on raindrop size varied in accordance with the shrub canopy structure.
Editor Z.W. Kundzewicz  相似文献   
115.
ABSTRACT

The modelling of soil loss and investigation of urban hydrology and wet weather pollution in Malaysia requires the definition of rainfall parameters for the region. In this study, an inexpensive method was applied to establish the influence of raindrop diameter on kinetics and rain intensity in Skudai, Peninsular Malaysia, as a prelude to wider regional research. Raindrop sizes vary from less than 1.2 mm to as big as 7.0 mm, with median raindrop diameters of 2.51 mm and a mean diameter of 2.56 mm. The median raindrop diameter–intensity relationship correlates strongly using power and exponential equations, with coefficients of determination of 0.75 and 0.73, respectively. The kinetic energy–intensity relationship fits an exponential function and also a linear equation with R2 values of 0.49 and 0.34, respectively. An average rain kinetic energy of 30 J m-2 mm-1 was recorded. This research leads to an objective reclassification of rainfall intensities in the region.
Editor Z.W. Kundzewicz; Associate editor not assigned  相似文献   
116.
The vector physics of wind‐driven rain (WDR) differs from that of wind‐free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the interrill component of the WEPP model for WDR events. The interrill delivery rates were measured in the wind tunnel facility of the International Center for Eremology (ICE), Ghent University, Belgium with an experimental setup to study different raindrop impact velocity vectors. Synchronized wind and rain simulations with wind velocities of 6, 10 and 14 m s–1 were applied to a test surface placed on windward and leeward slopes of 7, 15 and 20%. Since both rainfall intensity and raindrop impact velocity varied greatly depending on differences in the horizontal wind velocity under WDRs, the resultant kinetic energy flux (KEr, in J m–2 s–1) was initially used in place of the WEPP model intensity term in order to incorporate the effect of wind on impact velocity and frequency of raindrops. However, our results showed only minor improvement in the model predictions. For all research data, the model Coefficients of Determination (r2) were 0·63 and 0·71, when using the WEPP and the KEr approaches, respectively. Alternately, integrating the angle of rain incidence into the model by vectorally partitioning normal kinetic energy flux (KErn, in J m–2 s–1) from the KEr greatly improved the model's ability to estimate the interrill sediment delivery rates (r2 = 0·91). This finding suggested that along with the fall trajectory of wind‐driven raindrops with a given frequency, raindrop velocity and direction at the point of impact onto the soil surface provided sufficient physical information to improve WEPP sediment delivery rate predictions under WDR. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
117.
利用激光雨滴谱仪检验消(减)雨作业效果   总被引:1,自引:0,他引:1  
为了有效地检验人工影响效果,设计了地面火箭和飞机催化作业方案,分析了2009年秋季的雨滴谱观测资料。计算了火箭作业点相对于激光雨滴谱仪的距离和方位,为了便于实际作业指挥中的灵活应用,将结果标注在多普勒雷达的地图上。分析了10次降水过程共5338min的雨滴浓度资料。结果显示,秋季积层混合云的雨滴浓度小于500个的占87.6%,而大于3000个的浓度出现几率很低,不同过程雨滴浓度分布有明显差别;2009年10月16日降水过程出现最大雨滴浓度6003个,部分原因可能与火箭消减雨催化作业有关。  相似文献   
118.
南京北郊冬季大气SO2、NO2和O3的变化特征   总被引:1,自引:0,他引:1  
利用差分吸收光谱仪DOAS(differential optical absorption spectroscopy),对2007年11月—2008年1月南京北郊大气SO2、NO2和O3进行了观测。结合Parsivel降水粒子谱仪和自动气象站的资料,对冬季大气污染气体的浓度变化规律及降水和风速风向对其的影响进行了分析。结果表明,南京北郊大气SO2浓度较高,呈明显双峰特征,分别在12时(北京时,下同)和00时达最大,受附近排放源的影响最大,东风及南风时比静风时SO2浓度更高。降水对SO2湿清除效果明显,清除系数平均为0.168 h-1。NO2气体呈明显单峰特征,在18时达最高值。南京北郊是NO2源区之一,主要受附近高速公路汽车尾气排放源的影响。静风时NO2浓度最高。O3浓度受NO2的影响较明显。O3日变化呈单峰特征,在15时达最大值,静风时O3浓度最低。降水对O3的间接影响较明显,在降水时,白天由于太阳辐射较弱,O3浓度降低;夜晚NO浓度较低,使得O3浓度升高。  相似文献   
119.
X波段双偏振雷达反演雨滴谱方法研究   总被引:3,自引:1,他引:2  
X波段双偏振雷达观测参数能够完成雨滴谱反演,但是由于X波段雷达波长较短,降水观测时存在较大的衰减,本文采用自适应约束算法进行反射率和差分反射的衰减订正。通过对雨滴模型的散射模拟以及对雨滴谱进行Gamma谱拟合,建立了雨滴谱参数与双偏振雷达目标参数之间的函数关系和雨滴谱参数相互之间的关系,用于进行雨滴谱反演。将雨衰减订正前后的雷达目标参数进行雨滴谱反演并与实测雨滴谱进行对比,结果表明,所建立的X波段双偏振雷达反演雨滴谱方法能够较好地反演雨滴谱,并且经过订正后反演得到的雨滴谱在浓度、尺度和谱形上都优于订正前的反演结果,通过对距离高度扫描和平面位置扫描数据进行雨滴谱反演,可以得到雨滴谱参数的垂直结构和水平分布,可用以进行降水分析。  相似文献   
120.
In this paper, the raindrop spectral data collected at the Conghua station in Guangzhou area in June 1994 have been analyzed.It is found that the June rainfall causing great floods damage in southern China has the following features: It has long duration, large intensity, raindrop density and scale, with the largest raindrop diameter and rainfall intensity at 6.5 mm and 155.06 mm/hr respectively.on the other hand, according to weather system and rainfall nature, we divided the rainfall into five types and provided a group of Z-I relationships that can be referenced and used in radar quantitative measurement of rainfall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号