首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   105篇
  国内免费   174篇
测绘学   2篇
大气科学   15篇
地球物理   73篇
地质学   333篇
海洋学   80篇
天文学   2篇
综合类   32篇
自然地理   94篇
  2024年   1篇
  2023年   6篇
  2022年   16篇
  2021年   20篇
  2020年   19篇
  2019年   25篇
  2018年   11篇
  2017年   15篇
  2016年   15篇
  2015年   22篇
  2014年   59篇
  2013年   31篇
  2012年   17篇
  2011年   35篇
  2010年   30篇
  2009年   22篇
  2008年   19篇
  2007年   27篇
  2006年   25篇
  2005年   18篇
  2004年   26篇
  2003年   10篇
  2002年   22篇
  2001年   11篇
  2000年   23篇
  1999年   22篇
  1998年   10篇
  1997年   14篇
  1996年   7篇
  1995年   14篇
  1994年   12篇
  1993年   6篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有631条查询结果,搜索用时 15 毫秒
101.
Isotope data of precipitation and groundwater in parts of the Voltaian Basin in Northern Ghana were used to explain the groundwater recharge regime in the area. Groundwater recharge is an important parameter in the development of a decision support system for the management and efficient utilization of groundwater resources in the area. It is therefore important to establish the processes and sources of groundwater recharge. δ18O and δ2H data for local precipitation suggest enrichment relative to the Global Meteoric Water Line (GMWL) and indicate that precipitation takes place at a relative humidity less than 100%. The groundwater data plot on an evaporation line with a slope of 5, suggesting a high degree of evaporative enrichment of the precipitation in the process of vertical infiltration and percolation through the unsaturated zone into the saturated zone. This finding is consistent with the observation of high evapotranspiration rates in the area and ties in with the fact that significant clay fraction in the unsaturated zone limits vertical percolation and thus exposes the percolating rainwater to the effects of high temperatures and low humidities resulting in high evapotranspiration rates. Groundwater recharge estimates from the chloride mass balance, CMB, method suggest recharge in the range of 1.8–32% of the annual average precipitation in the form of rainfall. The highest rates are associated with areas where open wells encourage significant amount of groundwater recharge from precipitation in the area. In the northern parts of the study area, groundwater recharge is lower than 12%. The recharge so computed through the application of the CMB methodology takes on a spatial distribution akin to the converse of the spatial pattern of both δ18O and δ2H in the area. As such, the locations of the highest recharge are associated with the most depleted values of the two isotopes. This observation is consistent with the assertion that low vertical hydraulic conductivities slow down vertical percolation of precipitation down to the groundwater water. The percolating precipitation water thus gets enriched in the heavier isotopes through high evapotranspiration rates. At the same time, the amount of water that finally reaches the water table is considerably reduced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
102.
The chemical inputs by rainfall, throughfall and stemflow were studied in a pine plantation located in Pierces Creek Forest, Canberra, Australia. Three treatments were included in the study: a control (C) and two fertilizer treatments. The first fertilizer treatment (F) involved two applications of mixed fertilizers at high rates, the second (IL) involved application of a complete liquid fertilizer with irrigation, so as to remove nutrient and water restrictions to growth. The application rates of nutrients were higher for IL than F. Net inputs of elements in throughfall and stemflow, obtained by subtracting the amounts in the rainfall, were compared for different treatments. For cations (the sum of Ca, Mg, Na and K), the treatment effect on leaching by throughfall and stemflow was IL > F > C; but the F to C differences were greater for throughfall than stemflow. The effects were almost entirely due to increases in concentration, rather than the amount of rainfall becoming throughfall or stemflow. The concentration of nitrogen (as NH4 or NO3) in throughfall or stemflow could be lower or higher than in rainfall, indicating net removal or leaching, respectively. Net removal occurred for most rainfall events for the control treatment, for a substantial number of events for treatment F, but for few events for treatment IL. The ammonium ion was preferentially removed from throughfall, and nitrate from stemflow. Transfers of potassium and total nitrogen by litterfall, throughfall and stemflow were also studied. The proportions of potassium and nitrogen being transferred by these processes showed little difference between treatments; the overall values for potassium being 60% by throughfall, 4% by stemflow and 36% by litterfall. In contrast the transfer of nitrogen was dominated by litterfall (81%), with 18% by throughfall and 1% by stemflow. © 1997 John Wiley & Sons, Ltd.  相似文献   
103.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
104.
Enhanced coagulation treatment of bacteria‐containing raw water was studied by using three series of composite coagulants, that were prepared by combining polydiallyldimethylammonium chloride (PDADMAC) with different intrinsic viscosity values (0.55–2.47 dL/g) and mass percentages (5–20%) with polyaluminum chloride (PAC), aluminum sulfate (AS), and the composite of aluminum sulfate and ferric chloride (A‐F), respectively. The coagulants were tested by jar tests for the efficiencies to remove bacteria in raw water and to kill bacteria in settled sludge. It was found that when the residual turbidity of supernatant after sedimentation reached the control standard of 2 NTU in drinking water plant, the bacteria‐removing rates of PAC, AS, and A‐F were 92.22, 92.60, and 94.99%, respectively, and the bactericidal rates were 2.52, 1.22, and 2.94%, respectively. Contrastively, the bacteria‐removing rates of PAC/PDADMAC, AS/PDADMAC, and A‐F/PDADMAC could reach 95.45, 96.90, and 98.89%, respectively, and the bactericidal rates could reach 86.60, 91.81, and 96.98%, respectively. It could be deduced from the results that the bactericidal efficiencies of composite coagulants stemmed from the bactericidal action of PDADMAC, and the inorganic coagulants had little bactericidal function.  相似文献   
105.
四川盆地西部宫钾卤水以深层卤水形式赋存于地下4000余m的中三叠统雷口坡组四段(T2l4)盐系的碳酸盐岩储层中。富钾卤水与海水不同浓缩阶段相比,其中含K+含量异常高,构成液态钾矿资源;Br-、I-、B(3+)、Li+等稀有组分也远超过综合利用工业品位,为优质化工原料水。富钾卤水为沉积变质和钾盐溶滤的复合成因,具有固夜态找钾的指示意义。本文为四川盆地固液态找钾提供了有价值的线索。  相似文献   
106.
The application of a modified version of dynamic TOPMODEL for two subcatchments at Plynlimon, Wales is described. Conservative chemical mixing within mobile and immobile stores has been added to the hydrological model in an attempt to simulate observed stream chloride concentrations. The model was not fully able to simulate the observed behaviour, in particular the short‐ to medium‐term dynamics. One of the primary problems highlighted by the study was the representation of dry deposition and cloud‐droplet‐deposited chloride, which formed a significant part of the long‐term chloride mass budget. Equifinality of parameter sets inhibited the ability to determine the effective catchment mixing volumes and coefficients or the most likely partition between occult mass inputs and chloride mass inputs determined by catchment immobile‐store antecedent conditions. Some success was achieved, in as much as some aspects of the dynamic behaviour of the signal were satisfactorily simulated, although spectral analysis showed that the model could not fully reproduce the 1/f power spectra of observed stream chloride concentrations with its implications of a wide distribution of residence times for water in the catchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
107.
Chloride is a major anion in soil water and its concentration rises essentially as a function of evapotranspiration. Compared to herbaceous vegetation, high transpiration rates are measured for isolated trees, shelterbelts or hedgerows. This article deals with the influence of a tree hedge on the soil and groundwater Cl? concentrations and the possibility of using Cl? as an indicator of transpiration and water movements near the tree rows. Cl? concentrations were measured over 1 year at different depths in the unsaturated zone and in the groundwater along a transect intersecting a bottomland oak hedge. We observed a strong spatial heterogeneity of Cl? concentrations, with very high values up to 2 g l?1 in the unsaturated zone and 1·2 g l?1 in the upper part of the groundwater. This contrasts with the low and homogeneous concentrations (60–70 mg l?1) in the deeper part of the groundwater. Cl? accumulation in the unsaturated zone at the end of the vegetation season allows us to identify the active root zone extension of trees. In winter, upslope of the tree row, downwards leaching partly renews the soil solution in the root zone, while the slow water movement under the trees or farther downslope results in Cl? accumulation and leads to a salinization of the soil and groundwater. This salinization is of the same order as experimental conditions produce negative effects on oak seedlings. The measurement of Cl? concentrations in the unsaturated zone under tree rows at the end of the vegetation season would indicate whether certain topographic, pedological or climatic conditions are likely to favour a strong salinization of the soil, as observed in the present study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
108.
Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat–surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection–diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water–chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   
109.
本文研究了在HCl介质中,Se(Ⅳ)-氯化四苯胂络合物的极谱行为。在0.05mol/LHCl溶液中,该络合物于-0.58V(vs.SCE)处出现灵敏的吸附波。Se的检测下限可达0.0001μg/ml。本文拟定的方法应用于天然水中痕量Se的直接测定,结果良好。  相似文献   
110.
赵启文 《盐湖研究》2001,9(3):43-45
探讨以硝酸铵和氯化钾为原料、复分解法制硝酸钾工艺中 ,配料、硝酸钾结晶、氯化铵结晶等处操作温度对产量、质量、操作时间等的影响  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号