首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1284篇
  免费   139篇
  国内免费   232篇
测绘学   27篇
大气科学   99篇
地球物理   346篇
地质学   359篇
海洋学   504篇
天文学   4篇
综合类   82篇
自然地理   234篇
  2024年   11篇
  2023年   27篇
  2022年   53篇
  2021年   58篇
  2020年   55篇
  2019年   92篇
  2018年   44篇
  2017年   46篇
  2016年   49篇
  2015年   55篇
  2014年   82篇
  2013年   94篇
  2012年   67篇
  2011年   68篇
  2010年   78篇
  2009年   70篇
  2008年   68篇
  2007年   59篇
  2006年   81篇
  2005年   65篇
  2004年   69篇
  2003年   44篇
  2002年   57篇
  2001年   39篇
  2000年   24篇
  1999年   27篇
  1998年   24篇
  1997年   21篇
  1996年   23篇
  1995年   9篇
  1994年   5篇
  1993年   13篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   15篇
  1984年   9篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1978年   1篇
排序方式: 共有1655条查询结果,搜索用时 31 毫秒
51.
Low temperature is an important limiting factor for alpine ecosystems on the Tibetan Plateau. This study is based on data from on-site experimental warming platforms (open top chambers, OTC) at three elevations (4300 m, 4500 m, 4700 m) on the Qinghai-Tibet Plateau. The carbon and nitrogen stoichiometry characteristics of plant communities, both above-ground and below-ground, were observed in three alpine meadow ecosystems in August and September of 2011 and August of 2012. Experimental warming significantly increased above-ground nitrogen content by 21.4% in September 2011 at 4500 m, and reduced above-ground carbon content by 3.9% in August 2012 at 4300 m. Experimental warming significantly increased below-ground carbon content by 5.5% in August 2011 at 4500 m, and the below-ground ratio of carbon to nitrogen by 28.0% in September 2011 at 4300 m, but reduced below-ground nitrogen content by 15.7% in September 2011 at 4700 m, below-ground carbon content by 34.3% in August 2012 at 4700 m, and the below-ground ratio of carbon to nitrogen by 37.9% in August 2012 at 4700 m. Experimental warming had no significant effect on the characteristics of community carbon and nitrogen stoichiometry under other conditions. Therefore, experimental warming had inconsistent effects on the carbon and nitrogen stoichiometry of plant communities at different elevations and during different months. Soil ammonium nitrogen and nitrate nitrogen content were the main factors affecting plant community carbon and nitrogen stoichiometry.  相似文献   
52.
便携式Li-K分析仪的研制及其在锂辉石中锂的分析应用   总被引:1,自引:1,他引:0  
我国锂钾主要矿产资源大多分布在西部偏远地区,其勘查找矿或综合利用迫切需要现场快速分析技术的支持。本文介绍了自行开发的便携式Li-K分析仪的主要性能及其在锂辉石中锂的分析应用。Li-K分析仪是一种基于大气压的液体阴极辉光放电光谱仪,以待测液体为放电阴极,实现了样品中Li、K等元素的原子化和激发。该仪器以光纤传导CCD光谱仪作为检测器,其波长范围为345~1015 nm,分辨率3 nm;以Li 670.78 nm和K 769.90 nm分析谱线,在仪器最佳工作条件下测定Li、K的精密度(RSD,n=14)均低于2%,检出限为0.03μg/m L,检测范围0.1~10μg/m L。研究表明,不同酸度和酸的类型对谱线强度影响较大,且存在显著的样品基体效应,标准曲线法分析锂辉石中Li的结果偏差高达267%;而标准加入法可克服基体效应的影响,获得与ICP-OES一致性较好的分析结果,为现场开展固体样品中Li的测定奠定了基础。  相似文献   
53.
张陶  蒲俊兵  袁道先  李建鸿 《地质学报》2016,90(8):1965-1976
为了解岩溶区控制溪流中溶解无机碳(DIC)和NO_3~-昼夜变化的生物地球化学过程以及DIC和NO_3~-日变化量,于2014-07-22~2014-07-24期间,在广西壮族自治区融安县官村溪流中包括地下河出口(CK)和下游雷崖村(LY)设置两个监测点同时对水体物理化学参数以及C、N同位素(δ~(13) CDIC、δ~(15) N-NO_3~-和δ~(18) O-NO_3~-)展开了为期2d的高分辨率昼夜监测采样工作。结果发现CK点各物理化学参数没有表现出昼夜变化,但是LY点Ca2+、DIC以及PCO2表现出明显的昼夜变化规律,即白天下降夜间上升且与DO和pH表现出明显的负相关关系。相对于CK点,在白天水生光合生物光合作用导致LY点DIC下降的同时δ~(13) CDIC上升,而在夜间呼吸作用导致LY点DIC上升的同时δ~(13) CDIC下降且部分时间段要低于CK点δ~(13) CDIC值。溪流中的NH4+在监测期间基本上都在下降而NO_3~-离子在夜间和上午时间段都在上升,δ~(15) N-NO_3~-却表现出下降的趋势,且比较接近δ~(15) N-NO_3~-初始值,而NO_3~-离子在下午时间段出现下降的趋势。结果表明溪流中DIC昼夜变化主要受到水生植物的光合作用和呼吸作用控制,且通过质量平衡方程计算得知溪流中由于光合作用吸收无机碳而转为有机碳的量为0.94kgC/d,这部分有机碳可以形成相对长期稳定的自然C汇。溪流在夜间和上午时间段发生了N的硝化作用,增长量为2.08kgN/d,但在下午时间段(12:00~18:00)发生了N的同化作用,损失量为0.42kgN/d。溪流输出的NO_3~--N的量为1.66kgN/d,表明在富碳、富钙的岩溶溪流中,有利于水生光合生物的生长,促进N的同化作用的发生,从而减少溪流输出NO_3~--N的量,说明岩溶区溪流N的生物地球化学过程可能在昼夜尺度上改变水质。  相似文献   
54.
蓝藻的暴发通常是藻类之间竞争的结果,了解环境中蓝藻与其它藻类的竞争特点和生存策略对揭示藻华暴发的机制及治理具有重要意义。本文以营养竞争为例,以铜绿微囊藻(Microcystis aeruginosa)和小球藻(Chlorella vulgaris)为受试对象,通过测定细胞密度、胞内C、N、P、S四种主要元素含量以及培养基中总氮(TN)、总磷(TP)的消耗,研究不同营养等级(超富营养、富营养、中营养、贫营养)以及单独N、P限制下两种藻在单独培养和共生培养条件下的生长特征和竞争行为。结果表明:(1)在超富营养、富营养、中营养、贫营养条件时,单独培养下的两种藻生物量与营养丰富程度呈正相关;(2)共培养条件下,在高营养水平时铜绿微囊藻在竞争中占优势,低营养水平时小球藻具有竞争优势;(3)胞内C、N、P、S的测定发现,随着营养水平的下降,两种藻胞内N、P的百分含量逐渐减少,而C、S并未呈现显著变化;(4)N限制时,铜绿微囊藻的半饱和常数Ks及最大比增长率μmax均大于小球藻;P限制条件下铜绿微囊藻的半饱和常数Ks小于小球藻,而最大比增长率μmax大于小球藻。综合分析,同一营养条件下,铜绿微囊藻竞争优势的先决因子是N,小球藻是P。因此,从营养竞争与生物适应力角度考虑,降低水体中富余的N或适当提高P的浓度可让小球藻获得竞争优势,对限制单一物种的形成具有平衡作用,可作为防治藻华的潜在方法。  相似文献   
55.
The release of excessive anthropogenic nitrogen contributes to global climate change, biodiversity loss, and the degradation of ecosystem services. Despite being an urgent global problem, the excess nitrogen is not governed globally. This paper considers possible governance options for dealing with excessive nitrogen through target setting, which is an approach commonly adopted to address global environmental problems. The articulation of the nitrogen problem and the numerous international institutions dealing with it, provide evidence of a nitrogen regime characterised by limited coordination and targets covering sources and impacts only partially. This calls for improving the nitrogen governance in the direction of more integrated approaches at the global scale. In this vein, the paper investigates two opposite governance options – here labelled as ‘holistic’ and ‘origin-based’ – and evaluates them for their capability to define solutions and targets for human-induced nitrogen. From the analysis, it emerges that origin-based solutions can be preferable to holistic solutions as they can be more specific and potentially have greater immediate results. Independent from which governance arrangement is chosen, what matters most is the speed at which an arrangement can deploy solutions to combat (fast-growing) nitrogen pollution.  相似文献   
56.
The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological environment has greatly changed with frequent harmful algal blooms. A monthly survey of water content, organic matter (TOM), and various forms of nitrogen and phosphorous in sediment from July 2002 to July 2003 in the bay was conducted. The results showed that the water content was correlated significantly with TOM and various forms of nitrogen and phosphorus and can be used as proxy for quick and rough estimate of these factors in the future surveys. TOM was also correlated significantly with various forms of nitrogen and phosphorus, indicating that it was one of the key factors affecting the concentrations and distributions of nitrogen and phosphorus in the investigated waters. Average total Kjeldhal nitrogen (TkN) content was( 1 113.1 ± 382.5)μg/g and average total phosphorus (TP) content was(567.2± 223.3)μg/g, and both were much higher than those of similar estuaries in China and elsewhere. Average nitrogen and phosphorus tended to be higher inside than outside the bay, higher at aquaculture than non-aquaculture areas, and higher at fish-cage culture than oyster culture areas, suggesting that large-scale mariculture inside the bay played an important role in the eutrophication of the Zhelin Bay. Various forms of nitrogen and phosphorus concentrations were higher during the warm season (July--September), which was due to the increased decomposition and concentration of organic matter resulted from the fast growth and high mortality of the cultured species. Compared with July 2002, TkN and TP contents were much higher in July 2003, in consonance with the eutrophication of the Zhelin Bay. Because exchangeable phosphorus (Ex-P), iron-bounded phos- phorus (Fe-P) and organic phosphorus (OP) combined accounted for 34.3% of the TP and authigenic phosphorus (Au-P  相似文献   
57.
An integrated mass balance and modelling approach for analysis of estuarine nutrient fluxes is demonstrated in the Swan River Estuary, a microtidal system with strong hydrological dependence on seasonal river inflows. Mass balance components included estimation of gauged and ungauged inputs to the estuary and losses to the ocean (outflow and tidal exchange). Modelling components included estimation of atmospheric (N fixation, denitrification) and sediment–water column nutrient exchanges. Gross and net denitrification derived using two independent methods were significantly correlated (r2 = 0.49, p < 0.01) with net rates averaging 40% of gross. Annual nitrogen (N) and phosphorus (P) loads from major tributaries were linearly correlated with annual freshwater discharge and were 3-fold higher in wet years than in dry years. Urban drains and groundwater contributed, on average, 26% of N inputs and 19% of P inputs, with higher relative contributions in years of low river discharge. Overall, ungauged inputs accounted for almost 35% of total nitrogen loads. For N, elevated loading in wet years was accompanied by large increases in outflow (7x) and tidal flushing (2x) losses and resulted in overall lower retention efficiency (31%) relative to dry years (70%). For P, tidal flushing losses were similar in wet and dry years, while outflow losses (4-fold higher) were comparable in magnitude to increases in loading. As a result, P retention within the estuary was not substantially affected by inter-annual variation in water and P loading (ca. 50% in all years). Sediment nutrient stores increased in most years (remineralisation efficiency ca. 50%), but sediment nutrient releases were significant and in some circumstances were a net source of nutrients to the water column.  相似文献   
58.
Water and sediment samples were collected at Datong from June 1998 to March 1999 to examine seasonal changes in the transports of nitrogen (N) and phosphorus (P) from the Changjiang River (Yangtze River) to the East China Sea (ECS). Dissolved inorganic nitrogen (DIN; dominated by nitrate) concentration exhibited small seasonality, and DIN flux was largely controlled by water discharge. Dissolved inorganic phosphorus (DIP) concentration was inversely correlated with water discharge, and DIP was evenly delivered throughout a year. The transports of DIN and DIP from the Changjiang River were consistent with seasonal changes in nutrient distributions and P limitation in the Changjiang Estuary and the adjacent ECS. Dissolved organic and particulate N (DON and PN) and P (DOP and PP) varied parallel to water discharge, and were dominantly transported during a summer flood. The fluxes of DOP and particulate bioavailable P (PBAP) were 2.5 and 4 times that of DIP during this period, respectively. PBAP accounted for 12–16% of total particulate P (PP), and was positively correlated with the summation of adsorbed P, Al–P and Fe–P. Ca–P, the major fraction of PP, increased with increasing percent of CaCO3. The remobilization of riverine DOP and PBAP likely accounted for the summer elevated primary production in DIP-depleted waters in the Changjiang Estuary and the adjacent ECS. The Changjiang River delivered approximately 6% of DIN (1459 × 106 kg), 1% of DIP (12 × 106 kg), and 2% of dissolved organic and particulate N and P to the totals of global rivers. The construction of the Three Gorges Dam might have substantially reduced the particulate nutrient loads, thereby augmenting P limitation in the Changjiang Estuary and ECS.  相似文献   
59.
The temporal and spatial variability of dissolved inorganic phosphate (DIP), nitrogen (DIN), carbon (DIC) and dissolved organic carbon (DOC) were studied in order to determine the net ecosystem metabolism (NEM) of San Diego Bay (SDB), a Mediterranean-climate lagoon. A series of four sampling campaigns were carried out during the rainy (January 2000) and the dry (August 2000 and May and September 2001) seasons. During the dry season, temperature, salinity and DIP, DIC and DOC concentrations increased from oceanic values in the outer bay to higher values at the innermost end of the bay. DIP, DIC and DOC concentrations showed a clear offset from conservative mixing implying production of these dissolved materials inside the bay. During the rainy season, DIP and DOC increased to the head, whereas salinity decreased toward the mouth due to land runoff and river discharges. The distributions of DIP and DOC also showed a deviation from conservative mixing in this season, implying a net addition of these dissolved materials during estuarine mixing within the bay. Mass balance calculations showed that SDB consistently exported DIP (2.8–9.8 × 103 mol P d−1), DIC (263–352 × 103 mol C d−1) and DOC (198–1233 × 103 mol C d−1), whereas DIN (5.5–18.2 × 103 mol N d−1) was exported in all samplings except in May 2001 when it was imported (8.6 × 103 mol N d−1). The DIP, DIC and DOC export rates along with the strong relationship between DIP, DIC or DOC and salinity suggest that intense tidal mixing plays an important role in controlling their distributions and that SDB is a source of nutrients and DOC to the Southern California Bight. Furthermore, NEM ranged from −8.1 ± 1.8 mmol C m−2 d−1 in September to −13.5 ± 5.8 mmol C m−2 d−1 in January, highlighting the heterotrophic character of SDB. In order to explain the net heterotrophy of this system, we postulate that phytoplankton-derived particulate organic matter, stimulated by upwelling processes in the adjacent coastal waters, is transported into the bay, retained and then remineralized within the system. Our results were compared with those reported for the heterotrophic hypersaline coastal lagoons located in the semi-arid coast of California–Baja California, and with those autotrophic hypersaline systems found in the semi-arid areas of Australia. We point out that the balance between autotrophy and heterotrophy in inverse estuaries is dependent on net external inputs of either inorganic nutrients or organic matter as it has been indicated for positive estuaries.  相似文献   
60.
The composition, density and community structure of the benthic macrofauna were investigated in sediments of the Campeche Canyon in the SW Gulf of Mexico. Total macrofaunal density ranged from 9466±2736 ind m−2 at the continental shelf station to 1550±195 ind m−2 in the canyon. Density values significantly diminished with distance from the coast and depth; only a few stations in the center of the canyon displayed larger density values (E-37 with 4666±1530 ind m−2, E-36 with 5791±642 ind m−2 and E-26 with 6925±2258 ind m−2). Densities were positively correlated to organic nitrogen in the sediment (r=0.82) and coarse silt (r=0.43), and negatively with depth (r=−0.74) and distance from the coast (r=−0.68). At all stations, the polychaete worms contributed most to the multi-species community structure. The nematodes and Foraminifera displayed their highest densities in the center of the canyon. The biomass values declined significantly with depth. We conclude that the macrofauna density and biomass changed in response to organic matter contents in the sediment, both with distance from the coast and with depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号