首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   255篇
  国内免费   690篇
测绘学   23篇
大气科学   986篇
地球物理   43篇
地质学   39篇
海洋学   452篇
综合类   37篇
自然地理   45篇
  2024年   8篇
  2023年   31篇
  2022年   66篇
  2021年   69篇
  2020年   100篇
  2019年   109篇
  2018年   48篇
  2017年   55篇
  2016年   33篇
  2015年   59篇
  2014年   74篇
  2013年   74篇
  2012年   74篇
  2011年   74篇
  2010年   59篇
  2009年   86篇
  2008年   66篇
  2007年   86篇
  2006年   70篇
  2005年   56篇
  2004年   50篇
  2003年   43篇
  2002年   33篇
  2001年   33篇
  2000年   11篇
  1999年   21篇
  1998年   23篇
  1997年   24篇
  1996年   21篇
  1995年   27篇
  1994年   19篇
  1993年   9篇
  1992年   6篇
  1991年   6篇
  1989年   2篇
排序方式: 共有1625条查询结果,搜索用时 421 毫秒
221.
The lack of in situ observations and the uncertainties of the drag coefficient at high wind speeds result in limited understanding of heat flux through the air-sea interface and thus inaccurate estimation of typhoon intensity in numerical models. In this study, buoy observations and numerical simulations from an air-sea coupled model are used to assess the surface heat flux changes and impacts of the drag coefficient parameterization schemes on its simulations during the passage of Typhoon Kalmaegi (2014). Three drag coefficient schemes, which make the drag coefficient increase, level off, and decrease, respectively, are considered. The air-sea coupled model captured both trajectory and intensity changes better than the atmosphere-only model, though with relatively weaker sea surface cooling (SSC) compared to that captured by buoy observations, which led to relatively higher heat flux and thus a stronger typhoon. Different from previous studies, for a moderate typhoon, the coupled simulation with the increasing drag coefficient scheme outputted an intensity most consistent with the observation because of the strongest SSC, reasonable ratio of latent and sensible heat exchange coefficients, and an obvious reduction in the overestimated surface heat flux among all experiments. Results from sensitivity experiments showed that surface heat flux was significantly determined by the drag coefficient-induced SSC rather than the resulting wind speed changes. Only when SSC differs indistinctively (<0.4°C) between the coupled simulations, heat flux showed a weak positive correlation with the drag coefficient-impacted 10-m wind speed. The drag coefficient also played an important role in decreasing heat flux even a long time after the passage of Kalmaegi because of the continuous upwelling from deeper ocean layers driven by the impacted momentum flux through the air-sea interface.  相似文献   
222.
双TC和梅雨锋共同作用下的一次暴雨过程分析   总被引:2,自引:1,他引:2  
通过NCEP再分析资料计算各种物理量和应用卫星云图、雷达资料,并用WRF中尺模式做数值模拟,从动力过程、水汽输送过程、中小尺度系统等3个方面对TC和梅雨锋共同作用在浙北产生的一次暴雨过程进行分析。结论如下:(1)动力过程特点:300 hPa急流出口区辐散,中层3支气流汇合形成变形场锋生,产生强烈上升运动。低层TC外围的东南气流输入暖平流和湿位涡,使海上台风倒槽向北传播发展,最终形成气旋。TC高层流出气流对梅雨锋南侧垂直环流的维持有利;(2)水汽主要由两个TC外围的环流输送;(3)卫星云图和雷达回波显示有不同的降水云团合并且有加强的过程。用WRF中尺模式做数值模拟显示:700 hPa中小尺度的切变线或辐合区与强降水回波相对应。过程主要特点是中低层两个TC外围的气流与西风带气流在华东地区汇合,形成变形场锋生,产生强烈的辐合上升。在不同的气流汇合后产生了强急流输送水汽,加强垂直环流和中小尺度的辐合,是强降水产生的主要原因。西南季风经过台风绕流后在合适的环境场下仍有可能到达华东地区,这时往往与中纬度西风带汇合,在这种情况下会加强梅雨降水。  相似文献   
223.
By using the Advanced Regional Eta-coordinate Model (AREM), the basic structure and cloud features of Typhoon Rananim are simulated and verified against observations. Five sets of experiments are designed to investigate the effects of the cloud microphysical processes on the model cloud structure and precipitation features. The importance of the ice-phase microphysics, the cooling effect related to microphysical characteristics change, and the influence of terminal velocity of graupel are examined. The resu...  相似文献   
224.
This study utilized the MM5 mesoscale model to simulate the landfalling process of Typhoon Talim. The simulated typhoon track, weather patterns, and rainfall process are consistent with the observation. Using the simulation results, the relation of the second type thermal helicity (H 2) to rainfall caused by the landfalling typhoon Talim was analyzed. The results show that H 2 could well indicate the heavy inland rainfall but it did not perform as well as the helicity in predicting rainfall during the beginning stage of the typhoon landfall. In particular, H 2 was highly correlated with rainfall of Talim at 1-h lead time. For 1–5-h lead time, it also had a higher correlation with rainfall than the helicity did, and thus showing a better potential in forecasting rainfall intensification. Further analyses have shown that when Talim was in the beginning stage of landfall, 1) the 850–200-hPa vertical wind shear around the Talim center was quite small (about 5 m s−1); 2) the highest rainfall was to the right of the Talim track and in the area with a 300-km radius around the Talim center, exhibiting no obvious relation to low-level temperature advection, low-level air convergence, and upper-level divergence; 3) the low-level relative vorticity reflected the rainfall change quite well, which was the main reason why helicity had a better performance than H 2 in this period. However, after Talim moved inland further, 1) it weakened gradually and was increasingly affected by the northern trough; 2) the vertical wind shear was enhanced as well; 3) the left side of the down vertical wind shear lay in the Lushan and Dabieshan mountain area, which could have contributed to triggering a secondary vertical circulation, helping to produce the heavy rainfall over there; hence, H 2 showed a better capacity to reflect the rainfall change during this stage.  相似文献   
225.
The impact of cloud microphysical processes on the simulated intensity and track of Typhoon Rananim is discussed and analyzed in the second part of this study. The results indicate that when the cooling effect due to evaporation of rain water is excluded, the simulated 36-h maximum surface wind speed of Typhoon Rananim is about 7 m s−1 greater than that from all other experiments; however, the typhoon landfall location has the biggest bias of about 150 km against the control experiment. The simulated strong outer rainbands and the vertical shear of the environmental flow are unfavorable for the deepening and maintenance of the typhoon and result in its intensity loss near the landfall. It is the cloud microphysical processes that strengthen and create the outer spiral rainbands, which then increase the local convergence away from the typhoon center and prevent more moisture and energy transport to the inner core of the typhoon. The developed outer rainbands are supposed to bring dry and cold air mass from the middle troposphere to the planetary boundary layer (PBL). The other branch of the cold airflow comes from the evaporation of rain water itself in the PBL while the droplets are falling. Thus, the cut-off of the warm and moist air to the inner core and the invasion of cold and dry air to the eyewall region are expected to bring about the intensity reduction of the modeled typhoon. Therefore, the deepening and maintenance of Typhoon Rananim during its landing are better simulated through the reduction of these two kinds of model errors.  相似文献   
226.
罗森波  罗秋红  舒锋敏  林永堂 《气象》2011,37(6):742-748
总结了在对台风风神数值预报失效,预报路径偏东的情况下,预报人员抓住天气形势的细微变化对路径及时修正,并紧密结合用户需求,以“全程跟进,及时沟通,急用户之所急”的高度责任心和服务态度,使海上石油平台1500人安全撤离,避免了人员伤亡和重大经济损失的服务过程。经研究发现:(1)“风神”偏西侧的强对流发展、地面负变压中心、中层正涡度中心、高层正散度中心的存在,以及云图北侧带状黑体区的形成均有利于“风神”西折;(2)在500hPa图上,“风神”前期西南部有一低压环流中心,后期东北侧高压坝形成,造成“风神”两次北翘。  相似文献   
227.
Analysis on structure of Typhoon Longwang based on GPS dropwinsonde data   总被引:1,自引:1,他引:0  
As one of the most severe typhoons in the year 2005,Typhoon Longwang is chosen as a case study in this article.Throughout its life,two surveillance flights are carried out on it.Different from previous studies,GPS(global positioning system)Dropwinsonde data collected from the Dropwinsonde Observations for Typhoon Surveillance near the Taiwan Region is chosen to present the thermodynamic and kinetic structure at its two different stages of development.This study suggests that not only kinetic structure but also thermodynamic structure of Longwang are more robust in the second surveillance than the first surveillance,with stronger and larger circulation and a warmer core.Further research shows that the environmental vertical wind shear mainly contributes to the asymmetric structure of the typhoon.The strong vertical wind shear not only results in the distinct asymmetric structure,but also restrains the development of the typhoon.  相似文献   
228.
Using the WRF (Weather Research Forecast) model, this work performed analysis and simulation on the rainband change during the landfall of Typhoon Haitang (2005) and found that breaking may occur over land and oceans leads to distinct asymmetric precipitation. The breaking is related to the topographic effect as well as interactions between the typhoon and midlatitude systems at upper levels. During the landfall, divergent flows at the 200-hPa level of the South-Asian high combined with divergent flows at the periphery of the typhoon to form a weak, inverted trough in the northwest part of the storm, with the mid- and low-level divergence fields on the west and northwest side of the typhoon center maintaining steadily. It intensifies the upper-level cyclonic flows, in association with positive vorticity rotating counterclockwise together with air currents that travel stepwise into a vorticity zone in the vicinity of the typhoon core, thereby forming a vorticity transfer belt in 22–25? N that extends to the eastern part of the storm. It is right here that the high-level vorticity band is subsiding so that rainfall is prevented from developing, resulting in the rainbelt breaking, which is the principal cause of asymmetric precipitation occurrence. Migrating into its outer region, the banded vorticity of Haitang at high levels causes further amplification of the cyclonic circulation in the western part and transfer of positive vorticity into the typhoon such that the rainband breaking is more distinct.  相似文献   
229.
Since the South China Sea (SCS) summer monsoon (SCSSM) is pronouncedly featured by abruptly intensified southwesterly and obviously increased precipitation over the SCS,the lower-tropospheric winds and/or convection intensities are widely used to determine the SCSSM onset.The methods can be used successfully in most of the years but not in 2006.Due to the intrusion of Typhoon Chanchu(0601)that year,the usual method of determining SCSSM onset date by utilizing the SCS regional indices is less capable of pinpointing the real onset date.In order to solve the problem,larger-scale situations have to be taken into account.Zonal and meridional circulations would be better to determine the break-out date of SCSSM in 2006.The result indicates that its onset date is May 16.Moreover,similar onset dates for other years can be obtained using various methods,implying that large-scale zonal and meridional circulations can be used as an alternative method for determining the SCSSM onset date.  相似文献   
230.
In this study,the authors introduce a new bogus data assimilation method based on the dimension-reduced projection 4-DVar,which can resolve the cost function directly in low-dimensional space.The authors also try a new method to improve the quality of samples,which are the base of dimension-reduced space projection bogus data assimilation (DRP-BDA).By running a number of numerical weather models with different model parameterization combinations on the typhoon Sinlaku,the authors obtained two groups of samples with different spreads and similarities.After DRP-BDA,the results show that,compared with the control runs,the simulated typhoon center pressure can be deepened by more than 20 hPa to 30 hPa and that the intensity can last as long as 60 hours.The mean track error is improved after DRP-BDA,and the structure of the typhoon is also improved.The wind near the typhoon center is enhanced dramatically,while the warm core is moderate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号