首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1063篇
  免费   231篇
  国内免费   383篇
测绘学   90篇
大气科学   597篇
地球物理   317篇
地质学   387篇
海洋学   134篇
天文学   1篇
综合类   59篇
自然地理   92篇
  2024年   4篇
  2023年   17篇
  2022年   27篇
  2021年   28篇
  2020年   44篇
  2019年   48篇
  2018年   37篇
  2017年   58篇
  2016年   32篇
  2015年   66篇
  2014年   90篇
  2013年   113篇
  2012年   64篇
  2011年   88篇
  2010年   55篇
  2009年   83篇
  2008年   75篇
  2007年   102篇
  2006年   88篇
  2005年   71篇
  2004年   52篇
  2003年   49篇
  2002年   40篇
  2001年   36篇
  2000年   42篇
  1999年   45篇
  1998年   40篇
  1997年   32篇
  1996年   33篇
  1995年   27篇
  1994年   30篇
  1993年   17篇
  1992年   9篇
  1991年   9篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1985年   3篇
  1984年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1677条查询结果,搜索用时 46 毫秒
991.
强降雨作用下边(滑)坡稳定性分析及预警技术研究   总被引:1,自引:1,他引:0  
以四川汉源二蛮山滑坡为例,根据现场滑坡情况勘查及室内试验确定土体参数;选择内置VBA为开发工具,开发基于ArcGIS的边(滑)坡稳定性分析插件,并据此得出研究区域危险区划评价图.研究结果表明,特殊地形条件、震后地质构造、连续强降雨以及坡体非饱和渗流等,使孔隙水压力增加和土基质吸力迅速减少,导致坡体滑移面处土的抗剪强度降低而发生滑坡;基于ArcGIS软件得出研究区域危险区划评价图,与滑坡的实际情况具有较高吻合度.研究成果为深入分析强降雨对边(滑)坡影响及边(滑)坡预警提供了新的途径.  相似文献   
992.
Abstract

The rating curve model (RCM) proposed by Moramarco and co-authors is modified here for flood forecasting purposes without using rainfall information. The RCM is a simple approach for discharge assessment at a river site of interest based on relating the local recorded stage and the remote discharge monitored at an upstream gauged river site located some distance away. The proposed RCM for real-time application (RCM-RT), involves only two parameters and can be used for river reaches where significant lateral flows occur. The forecast lead time depends on the mean wave travel time of the reach. The model is found to be accurate for a long reach of the Po River (northern Italy) and for two branches of the Tiber River (central Italy) characterized by different intermediate drainage areas and wave travel times. Moreover, the assessment of the forecast uncertainty coming from the model parameters is investigated by performing a Monte Carlo simulation. Finally, the model capability to accurately forecast the exceedence of fixed hydrometric thresholds is analysed.

Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   
993.
ABSTRACT

This study focused on the performance of the rotated general regression neural network (RGRNN), as an enhancement of the general regression neural network (GRNN), in monthly-mean river flow forecasting. The study of forecasting of monthly mean river flows in Heihe River, China, was divided into two steps: first, the performance of the RGRNN model was compared with the GRNN model, the feed-forward error back-propagation (FFBP) model and the soil moisture accounting and routing (SMAR) model in their initial model forms; then, by incorporating the corresponding outputs of the SMAR model as an extra input, the combined RGRNN model was compared with the combined FFBP and combined GRNN models. In terms of model efficiency index, R2, and normalized root mean squared error, NRMSE, the performances of all three combined models were generally better than those of the four initial models, and the RGRNN model performed better than the GRNN model in both steps, while the FFBP and the SMAR were consistently the worst two models. The results indicate that the combined RGRNN model could be a useful river flow forecasting tool for the chosen arid and semi-arid region in China.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   
994.
ABSTRACT

Forecasting future water demands has always been of great complexity, especially in the case of tourist cities which are subject to population fluctuations. In addition to the usual uncertainties related to climate and weather variables, daily water consumption in Mashhad, a tourist city is affected by a significant different fluctuation. Mashhad is the second most populous city in Iran. The number of tourists visiting the city is subject to national and religious events, which are respectively based on the Iranian formal calendar (secular calendar) and the Arabic Hijri calendar (Islamic religious calendar). Since religious events move relative to the secular calendar, the coincidence of the two calendars results in peculiar wild fluctuations in population. Artificial neural networks (ANNs) are chosen to predict water demand under such conditions. Three types of ANNs, feedforward back-propagation, cascade-forward and radial basis functions, are developed. In order to track how population fluctuation propagates in the model and affects the outputs, two sets of inputs are considered. For the first set, based on evaluating several repetitions, a typical combination of variables is selected as inputs, whereas for the second set, new calendar-based variables are included to decrease the effect of population fluctuations; the results are then compared using some performance criteria. A large number of runs are also conducted to assess the impact of random initialization of the weights and biases of networks and also the effect of calendar-based inputs on improvement of network performance. It is shown that, from the points of view of performance measures and unchanging outputs through numerous runs, the radial basis network that is trained by patterns including calendar-based inputs can provide the best domestic water demand forecasting under population fluctuations.
Editor D. Koutsoyiannis Associate editor E. Rozos  相似文献   
995.
ABSTRACT

The wavelet analysis technique was combined in this study with the projection pursuit autoregression (PPAR) model, and a new mid- and long-term runoff forecasting model, the wavelet analysis-based PPAR (PPAR-WA) is proposed, which realizes runoff forecasting from the perspective of the internal mechanism of a sequence. The runoff forecasting of the leading hydropower station in the Li Xianjiang cascade reservoirs in China was carried out to test the performance of the proposed model, and the accuracy and stability of the forecasting results were evaluated and analysed. The results show that the average relative error of the forecasting period can reach 9.6%, and the best relative error is less than 5% in some years. In addition, compared with PPAR, a back-propagation neural network and autoregression moving average model through three evaluation indexes, the results of PPAR-WA have higher accuracy and stronger stability. So, it has a certain value of popularization and application.  相似文献   
996.
Abstract

The helium concentrations have been measured in the groundwaters of the Sabarmati basin. Gujarat, and the Jaisalmer district, Rajasthan. The observed helium concentrations show localized anomalies. The magnitude of the excess helium is shown to be approximately inversely proportional to the square of the thickness of the sedimentary strata between the sampled aquifer and the Basement Trap surface in the Sabarmati basin.  相似文献   
997.
《水文科学杂志》2013,58(1):66-82
Abstract

An adaptive model for on-line stage forecasting is proposed for river reaches where significant lateral inflow contributions occur. The model is based on the Muskingum method and requires the estimation of four parameters if the downstream rating curve is unknown; otherwise only two parameters have to be determined. As the choice of the forecast lead time is linked to wave travel time along the reach, to increase the lead time, a schematization of two connected river reaches is also investigated. The variability of lateral inflow is accounted for through an on-line adaptive procedure. Calibration and validation of the model were carried out by applying it to different flood events observed in two equipped river reaches of the upper-middle Tiber basin in central Italy, characterized by a significant contributing drainage area. Even if the rating curve is unknown at the downstream section, the forecast stage hydrographs were found in good agreement with those observed. Errors in peak stage and time to peak along with the persistence coefficient values show that the model has potential as a practical tool for on-line flood risk management.  相似文献   
998.
江苏数字地震台网是中国地震局"十五"重点改造项目。文章介绍了"十五"江苏数字地震台网的建设内容、台网布局、监测能力和功能。台网建成后,布局较为合理,宽频带、大动态、高精度的数字地震台网对提高江苏地震监测技术水平、发挥防震减灾工作的基础作用、促使经济快速发展,保障社会稳定有着重要作用。  相似文献   
999.
Abstract

One of the world's largest irrigation networks, based on the Indus River system in Pakistan, faces serious scarcity of water in one season and disastrous floods in another. The system is dominated both by monsoon and by snow and glacier dynamics, which confer strong seasonal and inter-annual variability. In this paper two different forecasting methods are utilized to analyse the long-term seasonal behaviour of the Indus River. The study also assesses whether the strong seasonal behaviour is dominated by the presence of low-dimensional nonlinear dynamics, or whether the periodic behaviour is simply immersed in random fluctuations. Forecasts obtained by nonlinear prediction (NLP) and the seasonal autoregressive integrated moving average (SARIMA) methods show that the performance of NLP is relatively better than the SARIMA method. This, along with the low values of the correlation dimension, is indicative of low-dimensional nonlinear behaviour of the hydrological dynamics. A relatively better performance of NLP, using an inverse technique, may also be indicative of the low-dimensional behaviour. Moreover, the embedding dimension of the best NLP forecasts is in good agreement with the estimated correlation dimension. This provides evidence that the nonlinearity inherent in the monthly river flow due to the snowmelt and the monsoon variations dominate over the high-dimensional components and might be exploited for prediction and modelling of the complex hydrological system.

Citation Hassan, S. A. & Ansari, M. R. K. (2010) Nonlinear analysis of seasonality and stochasticity of the Indus River. Hydrol. Sci. J. 55(2), 250–265.  相似文献   
1000.
Abstract

The development of statistical relationships between local hydroclimates and large-scale atmospheric variables enhances the understanding of hydroclimate variability. The rainfall in the study basin (the Upper Chao Phraya River Basin, Thailand) is influenced by the Indian Ocean and tropical Pacific Ocean atmospheric circulation. Using correlation analysis and cross-validated multiple regression, the large-scale atmospheric variables, such as temperature, pressure and wind, over given regions are identified. The forecasting models using atmospheric predictors show the capability of long-lead forecasting. The modified k-nearest neighbour (k-nn) model, which is developed using the identified predictors to forecast rainfall, and evaluated by likelihood function, shows a long-lead forecast of monsoon rainfall at 7–9 months. The decreasing performance in forecasting dry-season rainfall is found for both short and long lead times. The developed model also presents better performance in forecasting pre-monsoon season rainfall in dry years compared to wet years, and vice versa for monsoon season rainfall.

Editor Z.W. Kundzewicz

Citation Singhrattna, N., Babel, M.S. and Perret, S.R., 2012. Hydroclimate variability and long-lead forecasting of rainfall over Thailand by large-scale atmospheric variables. Hydrological Sciences Journal, 57 (1), 26–41.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号