首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2147篇
  免费   476篇
  国内免费   863篇
测绘学   102篇
大气科学   1156篇
地球物理   391篇
地质学   925篇
海洋学   380篇
天文学   28篇
综合类   172篇
自然地理   332篇
  2024年   24篇
  2023年   51篇
  2022年   86篇
  2021年   110篇
  2020年   114篇
  2019年   138篇
  2018年   103篇
  2017年   107篇
  2016年   108篇
  2015年   103篇
  2014年   146篇
  2013年   149篇
  2012年   159篇
  2011年   173篇
  2010年   133篇
  2009年   163篇
  2008年   148篇
  2007年   163篇
  2006年   152篇
  2005年   121篇
  2004年   121篇
  2003年   109篇
  2002年   100篇
  2001年   97篇
  2000年   65篇
  1999年   56篇
  1998年   65篇
  1997年   70篇
  1996年   60篇
  1995年   48篇
  1994年   53篇
  1993年   40篇
  1992年   35篇
  1991年   27篇
  1990年   21篇
  1989年   16篇
  1988年   24篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   5篇
  1982年   1篇
  1981年   1篇
  1978年   6篇
  1973年   1篇
排序方式: 共有3486条查询结果,搜索用时 15 毫秒
1.
This paper proposes a multi‐level parallelized substructuring–frontal combined algorithm for the analysis of the problem of thermo/hydraulic/mechanical behaviour of unsaturated soil. Temperature, displacement, pore water pressure and pore air pressure are treated as the primary variables in a non‐linear analysis. Details are given firstly of the substructuring–frontal combined approach. The incorporation of the algorithm in a multi‐level parallel strategy is then discussed. The parallel processing can thus be carried out at different substructural levels. The method thus developed impacts, in a positive way, on both computer storage requirement and execution time. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
The characteristics of atmospheric heat source associated with the summer monsoon onset in the South China Sea (SCS) are studied using ECMWF reanalysis data from 1979 to 1993. A criterion of the SCS summer monsoon onset is defined by the atmospheric hea…  相似文献   
3.
鄂尔多斯盆地的西北部、东北部和南部三个区域现今大地热流平均值分别为56.3、67.3和65.3mW/m^2,对应的生态环境格局也有明显的差异。研究表明,大地热流每增加4~5mW/m^2可使年均地表温度升高约l℃,使最低月均地表温度升高2。C以上。鄂尔多斯盆地东北部的平均大地热流比西北部高出11mW/m^2,东北部年均地表温度可能比西北部高出2~3℃,其最低月均地表温度可能比西北部高出4~6℃。西北部的大地热流平均值已经低于维持地表生态系统延续所需大地热流的临界值(57mW/m^2),其自然生态系统整体上已经处于脆弱境地;东北部和南部的大地热流均大于57mW/m^2,自然生态系统均尚较稳健。东北部的沙漠化可能是风沙侵入的结果,其生态应该是可以恢复的。整个西北部作为一个整体看,72万年以前大地热流就已衰减到临界值以下,区域生态系统渐趋脆弱,开始整体上向荒漠化演变。  相似文献   
4.
Based on the land surface temperature (LST), the land cover classification map,vegetation coverage, and surface evapotranspiration derived from EOS-MODIS satellite data, and by the use of GIS spatial analytic technique and multivariate statistical analysis method, the urban heat island (UHI) spatial distribution of the diurnal and seasonal variabilities and its driving forces are studied in Beijing city and surrounding areas in 2001. The relationships among UHI distribution and landcover categories, topographic factor, vegetation greenness, and surface evapotranspiration are analyzed. The results indicate that: (i) The significant UHI occur in Beijing city areas in the four seasons due to high heat capacity and multi-reflection of compression building, as well as with special topographic features of its three sides surrounded by mountains,especially in the summer. The UHI spatial distribution is corresponding with the urban geometry structure profile. The LST difference is approximately 4-6℃ between Beijing city and suburb areas, comparatively is 8- 10℃ between Beijing city area and outer suburb area in northwestern regions. (ii) The UHI distribution and intensity in daytime are different from nighttime in Beijing city area, the nighttime UHI is obvious. However, in the daytime, the significant UHI mainly appears in the summer, the autumn takes second place, and the UHI in the winter and the spring seem not obvious. The surface evapotranspiration in suburb areas is larger than that in urban areas in the summer, and high latent heat exchange is evident, which leads to LST difference between city area and suburb area. (iii) The reflection of surface landcover categories is sensitive to the UHI, the correlation between vegetation greenness and UHI shows obviously negative.The scatterplot shows that there is the negative correlation between NDVI and LST (R2 = 0.6481).The results demonstrate that the vegetation greenness is an important factor for reducing the UHI,and large-scale construction of greenbelts can considerably reduce the UHI effect.  相似文献   
5.
热带西太平洋热状况年代际和年际变化特征分析   总被引:3,自引:0,他引:3  
采用谐波分析和EOF分析方法,对比研究了暖池区域表层热状况(海表温度距平SST'表征)和浅层热状况(热含量距平HS'和次表层海温距平ST'表征)在1月和7月的年代际、年际尺度时空特征.分析结果表明:⑴不同季节的年代际、年际尺度SST'和HS'都存在两个显著模态,HS'1月的年代际、年际尺度结构最简单,而SST'7月的年代际和1月年际结构最复杂;⑵ 1970年代末和1980年代初发生的年代际跃变HS'晚于SST', 且SST'(HS')呈增温(减少)趋势;⑶ HS'的年际异常与ENSO关系密切,而SST'与ENSO关系不显著.  相似文献   
6.
Spherical harmonic analysis is made of the grid point values of geopotential heights at 700 mb and 300 mb levels for the months April to August for the years 1967 and 1972. The year 1967 is a good monsoon year and 1972 is a bad monsoon year in India. Meridional transport of sensible heat is obtained in wave number domain using spherical harmonic coefficients at 500 mb level form=1 to 10 andn–m=0 to 10, wherem represents the wave number round the globe andn–m gives the numbers of zero points from north pole to south pole excluding the poles themselves.Large northward transports of sensible heat in the month of May and in the monsoon months at the subtropics are characteristic of bad monsoon. Wave 1 transports sensible heat southward (forn–m=0) and wave 2 transports sensible heat northward (forn–m=4). Strengthening of wave 1 is conducive to good monsoon year and strengthening of wave 2 is conducive to bad monsoon year. These are the same features obtained in Fourier analysis. The contrasting features exist in waves 1 and 2 both in good and in bad monsoon and are better defined in the present analysis than in the Fourier analysis of the earlier study. However, waves 1 and 2 reveal clearer contrast in the present analysis than in the Fourier analysis. Bad monsoon activity is associated with large divergence of heart at subtropics and large convergence of heat at extra tropics.  相似文献   
7.
In this study, sensible heat (H) calculation using remote sensing data over an alpine grass landscape is conducted from May to September 2010, and the calculation is validated using LAS (large aperture scintillometers) measurements. Data from two remote sensing sensors (FY3A-VIRR and TERRA-MODIS) are analysed. Remote sensing data, combined with the ground meteorological observations (pressure, temperature, wind speed, humidity) are fed into the SEBS (Surface Energy Balance System) model. Then the VIRR-derived sensible heat (VIRR_SEBS_H) and MODIS-derived sensible heat (MODIS_SEBS_H) are compared with the LAS-estimated H, which are obtained at the respective satellite overpass time. Furthermore, the similarities and differences between the VIRR_SEBS_H and MODIS_SEBS_H values are investigated. The results indicate that VIRR data quality is as good as MODIS data for the purpose of H estimation. The root mean square errors (rmse) of the VIRR_SEBS_H and MODIS_SEBS_H values are 45.1098 W/m2 (n = 64) and 58.4654 W/m2 (n = 71), respectively. The monthly means of the MODIS_SEBS_H are marginally higher than those of VIRR_SEBS_H because the satellite overpass time of the TERRA satellite lags by 25 min to that of the FT3A satellite. Relative evaporation (EFr), which is more time-independent, shows a higher agreement between MODIS and VIRR. Many common features are shared by the VIRR_SEBS_H and the MODIS_SEBS_H, which can be attributed to the SEBS model performance. In May–June, H is over-estimated with more fluctuations and larger rmse, whereas in July–September, H is under-estimated with fewer fluctuations and smaller rmse. Sensitivity analysis shows that potential temperature gradient (delta_T) plays a dominant role in determining the magnitude and fluctuation of H. The largest rmse and over-estimation in H occur in June, which could most likely be attributed to high delta_T, high wind speed, and the complicated thermodynamic state during the transitional period when bare land transforms to dense vegetation cover.  相似文献   
8.
This study assesses surface urban heat island (SUHI) effects during heat waves in subtropical areas. Two cities in northern Taiwan, Taipei metropolis and its adjacent medium-sized city, Yilan, were selected for this empirical study. Daytime and night time surface temperature and SUHI intensity of both cities in five heat wave cases were obtained from MODIS Land-Surface Temperature (LST) and compared. In order to assess SUHI in finer spatial scale, an innovated three-dimensional Urbanization Index (3DUI) with a 5-m spatial resolution was developed to quantify urbanization from a 3-D perspective using Digital Terrain Models (DTMs). The correlation between 3DUI and surface temperatures were also assessed. The results obtained showed that the highest SUHI intensity in daytime was 10.2 °C in Taipei and 7.5 °C in Yilan. The SUHI intensity was also higher than that in non-heat-wave days (about 5 °C) in Taipei. The difference in SUHI intensity of both cities could be as small as only 1.0 °C, suggesting that SUHI intensity was enhanced in both large and medium-sized cities during heat waves. Moreover, the surface temperatures of rural areas in Taipei and Yilan were elevated in the intense heat wave cases, suggesting that the SUHI may reach a plateau when the heat waves get stronger and last longer. In addition, the correlation coefficient between 3DUI and surface temperature was greater than 0.6. The innovative 3DUI can be employed to assess the spatial variation of temperatures and SUHI intensity in much finer spatial resolutions than measurements obtained from remote sensing and weather stations. In summary, the empirical results demonstrated intensified SUHI in large and medium-sized cities in subtropical areas during heat waves which could result in heat stress risks of residents. The innovative 3DUI can be employed to identify vulnerable areas in fine spatial resolutions for formulation of heat wave adaptation strategies.  相似文献   
9.
This study assesses surface urban heat island (UHI) and its associated surface physical characteristics using remote sensing approaches. TERRA/MODIS images acquired in 2005 in three different seasons were selected to generate land surface tem-perature and surface characteristics for the Changsha-Zhuzhou-Xiangtan metropolitan area in China. The intensity of urban heat is-land effects and its seasonal variations were examined. The result showed that UHI effects were significant both in the summer and the spri...  相似文献   
10.
龚珍  董恒  胡友健 《测绘科学》2016,41(4):93-96
针对传统的地面观测方式很难全面掌握城市地面热岛的空间分布情况的问题,该文将HJ-1B卫星热红外图像代表的亮温图和采用HJ-1B卫星反演的温度图像正规化,利用量化等级体系对同一地区的亮温分布图和温度分布图进行划分,提出并采用间隙度指数对不同影像的高温区进行空间分布进行评价。实验结果表明:基于热红外影像的城市热岛空间分布比基于热红外影像反演的温度图的热岛空间分布更为集中,为研究不同影像之间的城市热岛空间分布提供了一种评价方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号