首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   37篇
  国内免费   76篇
测绘学   2篇
大气科学   91篇
地球物理   18篇
地质学   116篇
海洋学   26篇
天文学   533篇
综合类   9篇
自然地理   19篇
  2024年   2篇
  2023年   3篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   12篇
  2018年   5篇
  2017年   11篇
  2016年   8篇
  2015年   16篇
  2014年   16篇
  2013年   16篇
  2012年   13篇
  2011年   15篇
  2010年   15篇
  2009年   54篇
  2008年   30篇
  2007年   52篇
  2006年   62篇
  2005年   54篇
  2004年   70篇
  2003年   43篇
  2002年   56篇
  2001年   45篇
  2000年   49篇
  1999年   42篇
  1998年   40篇
  1997年   11篇
  1996年   7篇
  1995年   8篇
  1994年   10篇
  1993年   3篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有814条查询结果,搜索用时 15 毫秒
101.
Model atmosphere analysis, based on Kurucz models has been applied to study the F6V star π3 Ori (=BS1543=HD30652). The following values of the effective temperature, surface gravity and microturbulence velocity were obtained: = 6270±200 K, log g = 3.80.2, ξt =3.5±0.5 km/s. The abundances of 10 elements were determined. The resulting element abundances for the π3 Ori were found to be about three times lower with respect to the Sun. From evolutionary calculations we derived a mass, radius and luminosity for π3 Ori of M =1.3 M, R =2.38 R, L =7.9 L. Hence this star should be classified F6IV instead of F6 V. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
102.
103.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   
104.
Emission-line regions in active galactic nuclei (AGNs) and other photoionized nebulae should become larger in size when the ionizing luminosity increases. This 'breathing' effect is observed for the Hβ emission in NGC 5548 by using Hβ and optical continuum light curves from the 13-yr (1989–2001) AGN Watch monitoring campaign. To model the breathing, we use two methods to fit the observed light curves in detail: (i) parametrized models and, (ii) the memecho reverberation-mapping code. Our models assume that optical continuum variations track the ionizing radiation, and that the Hβ variations respond with time-delays τ due to light travel-time. By fitting the data using a delay-map  Ψ(τ, F c)  that is allowed to change with continuum flux F c, we find that the strength of the Hβ response decreases and the time-delay increases with ionizing luminosity. The parametrized breathing models allow the time-delay and the Hβ flux to depend on the continuum flux so that,  τ∝ F βc  and   F ∝ F αc  . Our fits give  0.1 < β < 0.46  and  0.57 < α < 0.66. α  is consistent with previous work by Gilbert and Peterson, and Goad, Korista and Knigge. Although we find β to be flatter than previously determined by Peterson et al. using cross-correlation methods, it is closer to the predicted values from recent theoretical work by Korista and Goad.  相似文献   
105.
We present the results of our tests of an acousto-optical imaging spectrophotometer with a CCD detector for astronomical observations. The tunable acousto-optical filter, based on a paratellurite single crystal with a 13 Å pass band operates in the wavelength range 6300–11000 Å. We obtained image spectra for the planetary nebula NGC 7027 in the Hα line and for Saturn in the methane absorption band, as well as Hα and continuum images for the nuclear region of the Seyfert galaxy NGC 1068.  相似文献   
106.
We discuss the possible observational manifestation of the formation of massive black holes in galactic nuclei in the form of an intense high-energy neutrino flux. A short-lived (≤10 yr) hidden neutrino source results from the natural dynamicalal evolution of a central star cluster in the galactic nucleus before its gravitational collapse. The central star cluster at the final evolutionary stage consists of degenerate compact stars (neutron stars and stellar-mass black holes) and is embedded in a massive gaseous envelope produced by destructive collisions of normal stars. Multiple fireballs from frequent collisions of neutron stars give rise to a tenuous quasi-stationary cavity in the central part of the massive envelope. The cavity is filled with shock waves on which an effective cosmic-ray acceleration takes place. Allthe accelerated particles, except the secondary high-energy neutrinos, are absorbed in the dense envelope. The neutrino signal that carries information on the dynamicals of the collapsing galactic nucleus can be recorded by a neutrino detector with an effective area S∼1 km2.  相似文献   
107.
108.
109.
110.
The ultrahigh-energy (>20 TeV ) gamma rays emitted by active galactic nuclei can be absorbed in intergalactic space through the production of electron-positron pairs during their interaction with extragalactic background photon fields. The electrons and positrons produced by this interaction form an electromagnetic halo. We have studied the halo formation and calculated the halo radiation spectrum. The magnetic field in the halo formation region is assumed to be strong enough for the electron velocities to be isotropized. For such fields, the halo formation process can be described by the method of generations. We calculated the synchrotron and Compton backscattering radiation spectra for the total halo luminosity. We obtained the spatial distribution of the radiation for a point gamma-ray source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号