首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1105篇
  免费   163篇
  国内免费   214篇
测绘学   2篇
大气科学   218篇
地球物理   247篇
地质学   599篇
海洋学   228篇
天文学   90篇
综合类   25篇
自然地理   73篇
  2024年   5篇
  2023年   19篇
  2022年   24篇
  2021年   34篇
  2020年   41篇
  2019年   25篇
  2018年   27篇
  2017年   34篇
  2016年   30篇
  2015年   32篇
  2014年   38篇
  2013年   40篇
  2012年   35篇
  2011年   48篇
  2010年   44篇
  2009年   63篇
  2008年   73篇
  2007年   67篇
  2006年   80篇
  2005年   64篇
  2004年   76篇
  2003年   58篇
  2002年   56篇
  2001年   38篇
  2000年   71篇
  1999年   59篇
  1998年   44篇
  1997年   43篇
  1996年   36篇
  1995年   23篇
  1994年   29篇
  1993年   26篇
  1992年   16篇
  1991年   5篇
  1990年   21篇
  1989年   9篇
  1988年   11篇
  1987年   9篇
  1986年   5篇
  1985年   10篇
  1984年   7篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
排序方式: 共有1482条查询结果,搜索用时 15 毫秒
11.
The speciation of dissolved iodine and the distributions of the iodine species in the deep Chesapeake Bay underwent seasonal variations in response to changes in the prevailing redox condition. In the deep water, the ratios of iodate to iodide and iodate to inorganic iodine decreased progressively from the Winter through the Summer as the deep water became more poorly oxygenated before they rebounded in the Fall when the deep water became re-oxygenated again. The composition of the surface water followed the same trend. However, in this case, the higher biological activities in the Spring and the Summer could also have enhanced the biologically mediated reduction of iodate to iodide by phytoplankton and contributed to the lower ratios found during those seasons. Superimposed on this redox cycle was a cycle of input and removal of dissolved iodine probably as a result of the interactions between the water column and the underlying sediments. Iodine was added to the Bay during the Summer when the deep water was more reducing and removed from the Bay in the Fall when the deep water became re-oxygenated. A third cycle was the inter-conversion between inorganic iodine and ‘dissolved organic iodine’, or ‘‘DOI’’. The conversion of inorganic iodine to ‘DOI’ was more prevalent in the Spring. As a result of these biogeochemical reactions in the Bay, during exchanges between the Bay and the North Atlantic, iodate-rich and ‘DOI’-poor water was imported into the Bay while iodide- and ‘DOI’-rich water was exported to the Atlantic. The export of iodide from these geochemically reactive systems along the land margins contributes to the enrichment of iodide in the surface open oceans.  相似文献   
12.
Hydrographic properties from CTD and discrete bottle sample profiles covering the Japan (East) Sea in summer, 1999, are presented in vertical sections, maps at standard depths, maps on isopycnal surfaces, and as property–property distributions. This data set covers most of the Sea with the exception of the western boundary region and northern Tatar Strait, and includes nutrients, pH, alkalinity, and chlorofluorocarbons, as well as the usual temperature, salinity, and oxygen observations.  相似文献   
13.
碳水化合物的组合合成是一项新兴技术,该技术可以在短时间内合成大量用于进行生物活性筛选的寡糖及拟糖物。液相与固相合成技术可以极大地加快药物研究与开发进程。作者针对该技术在碳水化合物合成方面的研究进展情况进行讨论。  相似文献   
14.
南海中部海区次表层NO2^——N的最大值   总被引:1,自引:0,他引:1  
杨嘉东 《台湾海峡》1992,11(2):138-145
本文根据1983年9月至1985年1月南海中部海区综合调查所获得的NO_2~--N及有关参数的观测资料,分析了该海区NO_2~--N的分布变化特征及其与环境因子的关系。结果表明,调查海区NO_2~--N含量的变化范围在0~0.54μmol/L之间,其中小于0.05μmol/L的测定值约占测定总数的82.1%,而大于0.05μmol/L测定值基本上出现在50~150m层。文中还对该海区次表层NO_2~--N最大值形成的机理作了初步探讨,指出密度跃层的终年存在、铵的氧化和浮游植物的代谢过程是调查海区次表层NO_2~--N最大值形成的主要因素。  相似文献   
15.
林峰  许清辉 《台湾海峡》1990,9(3):251-255
利用潮输沙量的计算方法,估算了闽江口入海口内3个断面所包围区域溶解态镉、铅和铜的收支平衡,从而研究了这些重金属的河口行为。  相似文献   
16.
The Wakamiko submarine crater is a small depression located in Kagoshima Bay, southwest Japan. Marine shallow‐water hydrothermal activity associated with fumarolic gas emissions at the crater sea floor (water depth 200 m) is considered to be related with magmatic activity of the Aira Caldera. During the NT05‐13 dive expedition conducted in August 2005 using remotely operated vehicle Hyper‐Dolphine (Japan Agency for Marine‐Earth Science and Technology), an active shimmering site was discovered (tentatively named the North site) at approximately 1 km from the previously known site (tentatively named the South site). Surface sediment (up to 30 cm) was cored from six localities including these active sites, and the alteration minerals and pore fluid chemistry were studied. The pore fluids of these sites showed a drastic change in chemical profile from that of seawater, even at 30 cm below the surface, which is attributed to mixing of the ascending hydrothermal component and seawater. The hydrothermal component of the North site is estimated to be derived from a hydrothermal aquifer at 230°C based on the hydrothermal end‐member composition. Occurrence of illite/smectite interstratified minerals in the North site sediment is attributed to in situ fluid–sediment interaction at a temperature around 150°C, which is in accordance with the pore fluid chemistry. In contrast, montmorillonite was identified as the dominant alteration mineral in the South site sediment. Together with the significant low potassium concentration of the hydrothermal end‐member, the abundant occurrence of low‐temperature alteration mineral suggests that the hydrothermal aquifer in the South site is not as high as 200°C. Moreover, the montmorillonite is likely to be unstable with the present pore fluid chemistry at the measured temperature (117°C). This disagreement implies unstable hydrothermal activity at the South site, in contrast to the equilibrium between the pore fluid and alteration minerals in the North site sediment. This difference may reflect the thermal and/or hydrological structure of the Wakamiko Crater hydrothermal system.  相似文献   
17.
Water and sediment samples collected from the Gomti River, a tributary of the Ganges River system, during the postmonsoon season have been analyzed to estimate major elemental chemistry. Water chemistry of the River Gomti shows almost monotonous spatial distribution of various chemical species, especially because of uniform presence of alluvium Dun gravels throughout the basin. The river annually transports 0.34×106 tonnes of total suspended material (TSM) and 3.0×106 tonnes of total dissolved solids (TDS), 69 percent of which is accounted for by bicarbonate ions only. Samples collected downstream of the city of Lucknow show the influence of anthropogenic loadings for a considerable distance in the river water. Na+, Cl, and SO4 2– concentrations build up downstream. The bed sediment chemistry is dominated by Si (36 percent), reflecting a high percentage of detrital quartz, which makes up about 74 percent of the mineralogy of the bed sediments in the River Gomti. The average Kjeldahl nitrogen concentration (234 g/g) indicates indirectly the amount of organic matter in the sediments. The Hg concentration in sediments has been found to be higher (average 904 ppb) than the background value. The suspended sediments are well sorted, very finely skewed, and extremely leptokurtic, indicating a low energy condition of flow in the Gomti River. The influence of chemical loads in the Gomti has been found to be small or nonexistent on the Ganges River, perhaps because the water discharge of the Gomti (1.57 percent) to the Ganges is quite low.  相似文献   
18.
The kinetics of the aqueous phase reactions of NO3 radicals with HCOOH/HCOO and CH3COOH/CH3COO have been investigated using a laser photolysis/long-path laser absorption technique. NO3 was produced via excimer laser photolysis of peroxodisulfate anions (S2O 8 2– ) at 351 nm followed by the reactions of sulfate radicals (SO 4 ) with excess nitrate. The time-resolved detection of NO3 was achieved by long-path laser absorption at 632.8 nm. For the reactions of NO3 with formic acid (1) and formate (2) rate coefficients ofk 1=(3.3±1.0)×105 l mol–1 s–1 andk 2=(5.0±0.4)×107 l mol–1 s–1 were found atT=298 K andI=0.19 mol/l. The following Arrhenius expressions were derived:k 1(T)=(3.4±0.3)×1010 exp[–(3400±600)/T] l mol–1 s–1 andk 2(T)=(8.2±0.8)×1010 exp[–(2200±700)/T] l mol–1 s–1. The rate coefficients for the reactions of NO3 with acetic acid (3) and acetate (4) atT=298 K andI=0.19 mol/l were determined as:k 3=(1.3±0.3)×104 l mol–1 s–1 andk 4=(2.3±0.4)×106 l mol–1 s–1. The temperature dependences for these reactions are described by:k 3(T)=(4.9±0.5)×109 exp[–(3800±700)/T] l mol–1 s–1 andk 4(T)=(1.0±0.2)×1012 exp[–(3800±1200)/T] l mol–1 s–1. The differences in reactivity of the anions HCOO and CH3COO compared to their corresponding acids HCOOH and CH3COOH are explained by the higher reactivity of NO3 in charge transfer processes compared to H atom abstraction. From a comparison of NO3 reactions with various droplets constituents it is concluded that the reaction of NO3 with HCOO may present a dominant loss reaction of NO3 in atmospheric droplets.  相似文献   
19.
The pH-dependence of oxide dissolution rates is controlled by Brønsted acid-base reactions at the mineral surface. These reactions are rapid but depend explicitly on temperature, as do the subsequent slow rates of bond hydrolysis. The net result is that dissolution rates vary in a complicated fashion with temperature and solution pH. The enthalpy changes of acid-base reactions on oxide materials are sufficiently similar, however, that general statements can be made about their contribution. The enthalpy changes from proton adsorption to a hydroxyl functional group (SOH), or to a deprotonated functional group (SO ), are generally exothermic. The enthalpy changes become increasingly endothermic, however, as charge accumulates on the mineral surface and the charged species interact electrostatically. The result is that mineral dissolution rates are least sensitive to temperature, as measured with an Arrhenius-like rate law, at pH conditions near the Point of Zero Net Proton Charge.  相似文献   
20.
The hitherto longest found lake sediment sequence on Byers Peninsula, Livingston Island, South Shetland Islands, was analysed with respect to lithology, chronology, diatoms, Pediastrum, pollen and spores, mosses, mineralogy, and sediment chemistry. During the ca. 5000 year long development the sediments were influenced by frequent tephra fall-outs. This volcanic impact played a major role in the lake's history during two periods, 4700–4600 and 2800–2500 BP, but was of importance during the lake's entire history with considerable influence on many of the palaeoenvironmentally significant indicators. The large and complex data set was analysed and zonated with different types of multivariate analysis. This resulted in a subdivision of the sequence into 8 time periods and 21 variables. Redundancy analysis (RDA) of this data set, both without and with the tephra periods, and with 4–6 of the variables as explanatory environmental variables, reveal that climatic/environmental signals are detectable. The palaeoclimatic picture that emerged out of the tephra noise suggests that the first 100 years were characterized by mild, humid conditions. This was followed by a less mild and humid climate until ca. 4000 BP when a gradual warming seems to have started, coupled with increased humidity. These mild and humid conditions seem to have reached an optimum slightly after 3000 BP. At ca. 2500 BP a distinct climatic deterioration occurred with colder and drier conditions and long seasons with ice cover. This arid, cold phase probably reached its optimum conditions at ca. 1500 BP, when slightly warmer conditions might have prevailed for a while. Except for the modern sample with rather mild climate, the last 1400 years seem to have been fairly arid and cold, and the effects of the frequent volcanic activity during this period is only vaguely seen in the records.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号