首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989篇
  免费   174篇
  国内免费   103篇
测绘学   77篇
大气科学   137篇
地球物理   354篇
地质学   182篇
海洋学   1篇
天文学   2篇
综合类   73篇
自然地理   440篇
  2024年   7篇
  2023年   9篇
  2022年   28篇
  2021年   70篇
  2020年   75篇
  2019年   57篇
  2018年   40篇
  2017年   51篇
  2016年   39篇
  2015年   56篇
  2014年   86篇
  2013年   110篇
  2012年   78篇
  2011年   77篇
  2010年   65篇
  2009年   33篇
  2008年   46篇
  2007年   46篇
  2006年   35篇
  2005年   39篇
  2004年   41篇
  2003年   29篇
  2002年   27篇
  2001年   24篇
  2000年   19篇
  1999年   16篇
  1998年   15篇
  1997年   11篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   10篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1266条查询结果,搜索用时 729 毫秒
141.
Future changes in reference evapotranspiration (ET0) are of increasing importance in assessing the potential impacts on hydrology and water resources systems of more pronounced climate change. This study assesses the applicability of the Statistical Downscaling Model (SDSM) in projecting ET0, and investigates the seasonal and spatial patterns of future ET0 based on general circulation models (GCMs) across the Haihe River Basin. The results indicate that SDSM can downscale ET0 well in term of different basin-averaged measures for the HadCM3 and CGCM3 GCMs. HadCM3 has a much superior capability in capturing inter-annual variability compared to CGCM3 and thus is chosen as the sole model to assess the changes in future ET0. There are three homogeneous sub-regions of the Haihe River Basin: Northwest, Northeast and Southeast. Change points are detected at around 2050 and 2080 under the A2 and B2 scenarios, respectively. The Northwest is revealed to have a slight to strong increase in ET0, while the Northeast and the Southeast tend to experience a pattern change from decrease to increase in ET0.
EDITOR M.C. Acreman

ASSOCIATE EDITOR J. Thompson  相似文献   
142.
Eddy correlation measurements within the Nile Delta allowed the determination of evapotranspiration (E) for seven crops (rice, maize, cotton, sugar beet, berseem, wheat and fava beans) using basin irrigation (BI), furrow irrigation (FI), BI with increased intervals (BIi), FI with increased intervals (FIi), strip irrigation (SI) and drip irrigation (DI). Total E values over the cropping season for rice (BI, BIi) were the highest (>600 mm), while those for sugar beet (DI), maize (SI and DI) and berseem (BIi) were the lowest (<250 mm). The differences were due to a combination of atmospheric demand, soil moisture, the presence of surface standing water, root depth, and the length and timing of the cropping season. The DI and SI methods had the advantage for water saving, while the FIi and BIi methods were effective for crops with shallow root lengths. Estimated annual E was 566–828 mm/year (water-saving irrigation) and 875–1225 mm/year (conventional irrigation).  相似文献   
143.
Understanding how Amazonian rainforests deal with extended droughts is critical in the face of changing climate. This research analyze the physical properties and the soil water dynamics of a deep soil profile in an area of primary forest in central Amazonia to elucidate these processes under drought and nondrought conditions. Physical soil properties derived from soil cores exhibited a distinctive layer between 480 and 880 cm deep, characterized by higher microporosity and low plant water availability. In situ soil moisture measurements collected during the period from January 2003 through February 2006 and for depths ranging from 10 to 1,430 cm suggest that, in the study site, the top 480 cm of the soil profile satisfied most of the transpirational demands in normal climatological years. However, during exceptionally dry periods, such as the 2005 drought, root uptake occurs below 480 cm. As concluded by previous studies, most of the uptake is concentrated in the first meter of the soil profile: More than 40% of the total demand for transpiration is supplied by the top meter of soil. Because deep root uptake occurred at greater depths than normal during the 2005 drought, our results suggest that this is a fundamental mechanism to cope with prolonged droughts.  相似文献   
144.
In temperate humid catchments, evapotranspiration returns more than half of the annual precipitation to the atmosphere, thereby determining the balance available to recharge groundwaters and support stream flow and lake levels. Changes in evapotranspiration rates and, therefore, catchment hydrology could be driven by changes in land use or climate. Here, we examine the catchment water balance over the past 50 years for a catchment in southwest Michigan covered by cropland, grassland, forest, and wetlands. Over the study period, about 27% of the catchment has been abandoned from row‐crop agriculture to perennial vegetation and about 20% of the catchment has reverted to deciduous forest, and the climate has warmed by 1.14 °C. Despite these changes in land use, the precipitation and stream discharge, and by inference catchment‐scale evapotranspiration, have been stable over the study period. The remarkably stable rates of evapotranspirative water loss from the catchment across a period of significant land cover change suggest that rainfed annual crops and perennial vegetation do not differ greatly in evapotranspiration rates, and this is supported by measurements of evapotranspiration from various vegetation types based on soil water monitoring in the same catchment. Compensating changes in the other meteorological drivers of evaporative water demand besides air temperature—wind speed, atmospheric humidity, and net radiation—are also possible but cannot be evaluated due to insufficient local data across the 50‐year period. Regardless of the explanation, this study shows that the water balance of this landscape has been resilient in the face of both land cover and climate change over the past 50 years.  相似文献   
145.
A process‐based, spatially distributed hydrological model was developed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions (arctic hydrological and thermal model, ARHYTHM). The model first determines the flow direction in each element, the channel drainage network and the drainage area based upon the digital elevation data. Then it simulates various physical processes: including snow ablation, subsurface flow, overland flow and channel flow routing, soil thawing and evapotranspiration. The kinematic wave method is used for conducting overland flow and channel flow routing. The subsurface flow is simulated using the Darcian approach. The energy balance scheme was the primary approach used in energy‐related process simulations (snowmelt and evapotranspiration), although there are options to model snowmelt by the degree‐day method and evapotranspiration by the Priestley–Taylor equation. This hydrological model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture and evapotranspiration over a watershed at each time step as well as discharge in any specified channel(s). The model was applied to Imnavait watershed (about 2·2 km2) and the Upper Kuparuk River basin (about 146 km2) in northern Alaska. Simulated results of spatially distributed soil moisture content, discharge at gauging stations, snowpack ablations curves and other results yield reasonable agreement, both spatially and temporally, with available data sets such as SAR imagery‐generated soil moisture data and field measurements of snowpack ablation, and discharge data at selected points. The initial timing of simulated discharge does not compare well with the measured data during snowmelt periods mainly because the effect of snow damming on runoff was not considered in the model. Results from the application of this model demonstrate that spatially distributed models have the potential for improving our understanding of hydrology for certain settings. Finally, a critical component that led to the performance of this modelling is the coupling of the mass and energy processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
146.
从系统总体设计、系统功能、系统结构、数据库设计等方面详细介绍了临海基本农田保护网络地图发布系统的设计,采用ArcIMS技术进行开发,分别使用ArcSDE实现空间数据的动态管理,使用ADO管理属性数据,建立了关于农田保护的网络电子地图发布平台,实现了农田保护的高度信息化。  相似文献   
147.
高顶山矿区位于广安华蓥市城区东南约5km处。长期的采矿活动,导致区内矿山地质环境问题突出,严重影响华蓥山地区人民的生命财产安全。矿山地质环境问题亟待解决。本文通过分析区内主要存在的矿山地质环境问题,提出通过矿山地质灾害、矿山土地恢复、矿山地形地貌景观恢复治理,河道综合整治、道路修复、生态保育、产业提升等措施;消除安全隐患,保障区内人民生命财产安全;改善生态环境,实现华蓥山地区生态环境全面恢复,生态环境质量提升,提高环境承载力,实现区内"山青、水秀、林美、田良"的目标。并对区内的产业转型升级进行了探讨,提出将高顶山矿区建设成具有科普和教育价值的旅游景观目的地;利用矿区独具特色工业人文景观和别致的自然景观,将高顶山矿区建设成集"科普、休闲、康养、户外、探秘"五大功能于一体的矿山公园,推动矿业经济转型升级,促进产业结构转型和经济社会可持续发展。  相似文献   
148.
149.
自20世纪以来,在自然以及人类活动共同作用下,洞庭湖湿地面积与格局发生显著变化。本文在综合大量历史资料、相关文献以及数据的基础上,采用分段线性回归方法将近百余年(1900—2020年)洞庭湖湿地面积与格局变化划分为4个阶段,并重点分析了各阶段影响湿地演化的驱动因子及相互作用关系。1900年以来,洞庭湖湿地面积变化可分为1900—1949年的明显下降期、1950—1978年的快速萎缩期、1979—1998年的稳定期以及1999年至今的略微回升期,湿地景观格局变化经历了新中国成立前的相对稳定阶段、1950s—1990s的水域向洲滩转化阶段以及21世纪以来的洲滩向水域转化阶段。不同时期,由于社会经济与生产力水平的差异,湿地演变的驱动因素存在差异,导致湿地演变的速率与方向有所不同。围湖垦殖与退田还湖是导致湿地面积发生改变的主要因素,气象波动、水库建设、湖区采砂以及河道整治等则通过改变入湖水文泥沙情势影响湿地格局变化,并影响围湖垦殖与退田还湖等活动。为满足经济发展要求,政府在湿地演变中的参与度逐渐增加,对围湖垦殖的态度发生了“鼓励—参与—禁止—还湖”的转变,为近百余年洞庭湖湿地演化的核心驱动要素...  相似文献   
150.
The feasibility of polynomial chaos expansion (PCE) and response surface method (RSM) models is investigated for modelling reference evapotranspiration (ET0). The modelling results of the proposed models are validated against the M5 model tree and multi-layer perceptron neural network (MLPNN) methods. Two meteorological stations, Isparta and Antalya, in the Mediterranean region of Turkey, are inspected. Various input combinations of daily air temperature, solar radiation, wind speed and relative humidity are constructed as input attributes for the ET0. Generally, the modelling accuracy is increased by increasing the number of inputs. Including wind speed in the model inputs considerably increases their accuracy in modelling ET0. Mean absolute error (MAE), root mean square error (RMSE), agreement index (d) and Nash-Sutcliffe efficiency (NSE) are used as comparison criteria. The PCE is the most accurate model in estimating daily ET0, giving the lowest MAE (0.036 and 0.037 mm) and RMSE (0.047 and 0.050 mm) and the highest d (0.9998 and 0.9999) and NSE (0.9992 and 0.9996) with the four-input PCE models for Isparta and Antalya, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号