首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   27篇
  国内免费   34篇
测绘学   9篇
大气科学   281篇
地球物理   57篇
地质学   57篇
海洋学   13篇
天文学   59篇
综合类   7篇
自然地理   170篇
  2024年   2篇
  2023年   12篇
  2022年   34篇
  2021年   27篇
  2020年   21篇
  2019年   37篇
  2018年   36篇
  2017年   24篇
  2016年   39篇
  2015年   20篇
  2014年   30篇
  2013年   107篇
  2012年   25篇
  2011年   23篇
  2010年   19篇
  2009年   27篇
  2008年   34篇
  2007年   17篇
  2006年   14篇
  2005年   7篇
  2004年   12篇
  2003年   13篇
  2002年   11篇
  2001年   14篇
  2000年   5篇
  1999年   3篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   8篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
排序方式: 共有653条查询结果,搜索用时 11 毫秒
81.
The question of whether China is on the verge of a ‘shale gas revolution’ is examined. This has potentially significant consequences for energy policy and climate change mitigation. Contrary to the optimistic reading of some commentators, it argues that various technological, environmental, political, regulatory and institutional factors will constrain the growth of China's shale gas market and that such a revolution might in any event have consequences that are at best mixed, at worst antithetical to climate change mitigation.Policy relevanceChina's reserves of unconventional gas have the potential to transform energy policy, as has occurred in the US, resulting in the substitution of shale gas for coal in the energy mix. Because gas emits only approximately half the GHG per unit as coal, such a move would have important implications for climate policy. However, substantial obstacles stand in the way of the ‘energy revolution’ that some policy analysts see China as embarking upon. The need to acknowledge these obstacles, particularly those relating to regulation and governance (and whether or to what extent they can be overcome), is an issue of profound importance to the future of climate and energy policy.  相似文献   
82.
种植不同作物对农田N2O和CH4排放的影响及其驱动因子   总被引:3,自引:0,他引:3  
以种植玉米(Zea mays)、大豆(Glycine max)和水稻(Oryza sativa)的农田生态系统为研究对象,于2003年6~10月系统观测了N2O和CH4的排放、土壤温度和湿度以及相关的生物学因子。玉米和水稻分别施化肥氮300 kg.hm-2,大豆未施氮肥。研究结果表明,作物类型对农田N2O和CH4排放具有显著的影响。土壤-玉米系统、土壤-大豆系统和土壤-水稻系统的N2O季节性平均排放通量分别为620.5±57.6、338.0±7.5和238.8±13.6μg.m-2.h-1(N2O)。种植作物促进了农田生态系统的N2O排放,玉米地土壤和裸地土壤的N2O平均排放通量分别为364.2±11.7和163.7±10.5μg.m-2.h-1(N2O)。土壤-玉米系统、土壤-水稻系统、玉米地土壤和裸地土壤N2O排放受土壤温度的影响,与土壤湿度无显著统计相关,但受土壤温度和水分的综合影响。土壤-大豆系统N2O排放随作物绿叶干重的增加而指数增加,与土壤温度和水分条件无统计相关,由大豆作物自身氮代谢所产生的N2O-N季节总量约为6.2 kg.hm-2(N)。土壤-水稻系统CH4平均排放通量为1.7±0.1 mg.m-2.h-1(CH4),烤田抑制了稻田CH4的排放。烤田前影响稻田CH4排放的主要因素是水稻生物量,烤田后的浅水灌溉及湿润灌溉阶段的CH4排放与土壤温度和水稻生物量无关。本研究未观测到旱作农田有吸收CH4的现象。  相似文献   
83.
This article illustrates the main difficulties encountered in the preparation of GHG emission projections and climate change mitigation policies and measures (P&M) for Kazakhstan. Difficulties in representing the system with an economic model have been overcome by representing the energy system with a technical-economic growth model (MARKAL-TIMES) based on the stock of existing plants, transformation processes, and end-use devices. GHG emission scenarios depend mainly on the pace of transition in Kazakhstan from a planned economy to a market economy. Three scenarios are portrayed: an incomplete transition, a fast and successful one, and even more advanced participation in global climate change mitigation, including participation in some emission trading schemes. If the transition to a market economy is completed by 2020, P&M already adopted may reduce emissions of CO2 from combustion by about 85 MtCO2 by 2030 – 17% of the emissions in the baseline (WOM) scenario. One-third of these reductions are likely to be obtained from the demand sectors, and two-thirds from the supply sectors. If every tonne of CO2 not emitted is valued up to US$10 in 2020 and $20 in 2030, additional P&M may further reduce emissions by 110 MtCO2 by 2030.  相似文献   
84.
Four policies might close the gap between the global GHG emissions expected for 2020 on the basis of current (2013) policies and the reduced emissions that will be needed if the long-term global temperature increase can be kept below the 2 °C internationally agreed limit. The four policies are (1) specific energy efficiency measures, (2) closure of the least-efficient coal-fired power plants, (3) minimizing methane emissions from upstream oil and gas production, and (4) accelerating the (partial) phase-out of subsidies to fossil-fuel consumption. In this article we test the hypothesis of the International Energy Agency (IEA) that these policies will not result in a loss of gross domestic product (GDP) and we estimate their employment effects using the E3MG global macro-econometric model. Using a set of scenarios we assess each policy individually and then consider the outcomes if all four policies were implemented simultaneously. We find that the policies are insufficient to close the emissions gap, with an overall emission reduction that is 30% less than that found by the IEA. World GDP is 0.5% higher in 2020, with about 6 million net jobs created by 2020 and unemployment reduced.

Policy relevance

The gap between GHG emissions expected under the Copenhagen and Cancun Agreements and that needed for emissions trajectories to have a reasonable chance of reaching the 2 °C target requires additional policies if it is to be closed. This article uses a global simulation model E3MG to analyse a set of policies proposed by the IEA to close the gap and assesses their macroeconomic effects as well as their feasibility in closing the gap. It complements the IEA assessment by estimating the GDP and employment implications separately by the different policies year by year to 2020, by major industries, and by 21 world regions.  相似文献   

85.
We focus on the retrieval of volcanic sulfur dioxide (SO2) emissions from an analysis of atmospheric UV backscatter spectra obtained by the Global Ozone Monitoring Experiment (GOME) spectrometer on board the ESA European Remote Sensing Satellite (ERS-2). Here, the last major eruptions of Mt. Etna on Sicily (Italy) in July/August 2001 and October/November 2002 provided an excellent opportunity to study the retrieval of SO2 columnar amounts from ground-based, LIDAR and satellite measurements. Our study shows that the bulk of emitted SO2 was confined in the troposphere, mainly between 700 hPa and 400 hPa which is confirmed by trajectory analysis, by LIDAR observations and AVHRR observations. The area of influence of Mt. Etna eruptions ranges from the Western Saharan Desert to Greece and the near east states and even down to the basin of Tschad, Africa. Our analysis revealed that information about the plume height of volcanic eruptions and aerosol parameters is necessary for a reliable quantitative retrieval of SO2 from space-borne sensor data at periods perturbed by volcanic eruptions.  相似文献   
86.
A numerical simulation model is presented in this paper,which comprises the processes of crop growth,soil organic carbon decomposition,and methane emissions in agroecosystems.Simulation results show that the model can simulate the main process of methane emissions well,and the correlation coefficient between the simulated values and observed data is 0.79 with 239 samples,which passed a significance test of 0.01.The average error of methane emission simulation in whole growth period is about 15%.Numerical analysis of the model indicates that the average temperature during rice growth period has much impacts on methane emissions,and the basic trend of interannual methane emissions is similar to that of average temperature.The amount of methane emissions reduces about 34.93%,when the fertilizer is used instead of manure in single rice paddy.  相似文献   
87.
Stable carbon isotopic composition of ethane and propane over the western North Pacific and eastern Indian Ocean between 31°N and 26°S was investigated from February through March 2004. The isotopic composition of ethane ranged from −28 to −18‰ and showed a gradual increase from north to south. Conversely, that of propane was between −31 and −24‰; it showed no systematic latitudinal variation. Investigation of the ethane/propane ratio indicates that ethane and propane that originated from northern mid-latitude countries in the eastern part of Eurasia were both transported into the western North Pacific region. However, the results of the isotopic analyses indicate the contribution of oceanic emission to the atmospheric propane during transport, although that contribution can not be discerned for ethane. A ship based stationary observation conducted in the western equatorial North Pacific showed that the isotopic composition of ethane varied from −25 to −19‰ and showed clear systematic diurnal variation: propane ranged between −32 to −26‰ and no such isotopic diurnal signal was observed. The diurnal variation for ethane is explained by entrainment of free tropospheric air, whereas the variation for propane was influenced by oceanic emissions as well as the entrainment. The contribution of oceanic emissions to the atmospheric propane inventory was considered from our isotopic observation. Isotopic composition of dissolved propane is estimated to be less than −38‰, and the contribution up to 79% was calculated when the isotopic composition of dissolved propane is assumed to be −40‰. Our study demonstrates that isotopic analysis can be more useful than ratio-based analysis to improve our present understanding of transport processes, especially for impact of the oceanic emissions on the atmospheric distribution of low level C2–C5 non-methane hydrocarbons such as propane in the remote marine atmosphere.  相似文献   
88.
The levels of low molecular weight hydrocarbons were measured at pristine sites and rural locations affected by hydrocarbon emissions from oil and gas producing fields in Venezuela. At the clean sites, lower concentrations of C2 to C6 alkanes were observed, whereas, in comparison with remotes sites, very much higher levels were measured at the polluted sites. Alkenes present relatively high concentrations, with isoprene being the most abundant, all over the study region. The main sources of alkenes are likely to be natural, mainly from vegetation. The levels of alkanes recorded at the clean sites and the alkene levels found everywhere in the region are in agreement with the values reported for other clean sites in the tropics. The increase of ozone production capacity due to the anthropogenic emissions of alkanes from oil and gas fields was estimated. Due to the presence in the atmosphere of important amounts of naturally emitted isoprene, ethene and propene, which makes a substantial contribution to the reactivity of the hydrocarbon mixture, a small increase (<5%) was estimated to occur in the capacity of the ozone production at a regional scale during the rainy season.  相似文献   
89.
Developed regions of the world represent a major atmospheric methane(CH_4) source, but these regional emissions remain poorly constrained. The Yangtze River Delta(YRD) region of China is densely populated(about 16% of China's total population) and consists of large anthropogenic and natural CH_4 sources. Here, atmospheric CH_4 concentrations measured at a 70-m tall tower in the YRD are combined with a scale factor Bayesian inverse(SFBI) modeling approach to constrain seasonal variations in CH_4 emissions. Results indicate that in 2018 agricultural soils(AGS, rice production) were the main driver of seasonal variability in atmospheric CH_4 concentration. There was an underestimation of emissions from AGS in the a priori inventories(EDGAR—Emissions Database for Global Atmospheric Research v432 or v50), especially during the growing seasons. Posteriori CH_4 emissions from AGS accounted for 39%(4.58 Tg, EDGAR v432) to 47%(5.21 Tg, EDGAR v50) of the total CH_4 emissions. The posteriori natural emissions(including wetlands and water bodies) were1.21 Tg and 1.06 Tg, accounting for 10.1%(EDGAR v432) and 9.5%(EDGAR v50) of total emissions in the YRD in2018. Results show that the dominant factor for seasonal variations in atmospheric concentration in the YRD was AGS,followed by natural sources. In summer, AGS contributed 42%(EDGAR v432) to 64%(EDGAR v50) of the CH_4 concentration enhancement while natural sources only contributed about 10%(EDGAR v50) to 15%(EDGAR v432). In addition, the newer version of the EDGAR product(EDGAR v50) provided more reasonable seasonal distribution of CH_4 emissions from rice cultivation than the old version(EDGAR v432).  相似文献   
90.
Although agriculture could contribute substantially to European emission reductions, its mitigation potential lies untapped and dormant. Market-based instruments could be pivotal in incentivizing cost-effective abatement. However, sector specificities in transaction costs, leakage risks and distributional impacts impede its implementation. The significance of such barriers critically hinges on the dimensions of policy design. This article synthesizes the work on emissions pricing in agriculture together with the literature on the design of market-based instruments. To structure the discussion, an options space is suggested to map policy options, focusing on three key dimensions of policy design. More specifically, it examines the role of policy coverage, instruments and transfers to farmers in overcoming the barriers. First, the results show that a significant proportion of agricultural emissions and mitigation potential could be covered by a policy targeting large farms and few emission sources, thereby reducing transaction costs. Second, whether an instrument is voluntary or mandatory influences distributional outcomes and leakage. Voluntary instruments can mitigate distributional concerns and leakage risks but can lead to subsidy lock-in and carbon price distortion. Third, the impact on transfers resulting from the interaction of the Common Agricultural Policy (CAP) with emissions pricing will play a key role in shaping political feasibility and has so far been underappreciated.

POLICY RELEVANCE

Following the 2015 Paris Agreement, European climate policy is at a crossroads. Achieving cost-effectively the 2030 and 2050 European targets requires all sectors to reduce their emissions. Yet, the cornerstone of European climate policy, the European Union Emissions Trading System (EU ETS), covers only about half of European emissions. Major sectors have been so far largely exempted from carbon pricing, in particular transport and agriculture. While transport has been increasingly under the spotlight as a possible candidate for an EU ETS sectoral expansion, policy discussions on pricing agricultural emissions have been virtually absent. This article attempts to fill this gap by investigating options for market-based instruments to reduce agricultural emissions while taking barriers to implementation into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号