首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   145篇
  国内免费   62篇
测绘学   34篇
大气科学   116篇
地球物理   345篇
地质学   108篇
海洋学   1篇
天文学   2篇
综合类   21篇
自然地理   217篇
  2024年   5篇
  2023年   5篇
  2022年   16篇
  2021年   53篇
  2020年   53篇
  2019年   40篇
  2018年   30篇
  2017年   36篇
  2016年   30篇
  2015年   31篇
  2014年   51篇
  2013年   89篇
  2012年   50篇
  2011年   48篇
  2010年   31篇
  2009年   25篇
  2008年   34篇
  2007年   30篇
  2006年   20篇
  2005年   29篇
  2004年   24篇
  2003年   14篇
  2002年   14篇
  2001年   18篇
  2000年   15篇
  1999年   8篇
  1998年   13篇
  1997年   10篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1983年   1篇
排序方式: 共有844条查询结果,搜索用时 828 毫秒
231.
Different satellite-based radiation (Makkink) and temperature (Hargreaves-Samani, Penman-Monteith temperature, PMT) reference evapotranspiration (ETo) models were compared with the FAO56-PM method over the Cauvery basin, India. Maximum air temperature (Tmax) required in the ETo models was estimated using the temperature–vegetation index (TVX) and an advanced statistical approach (ASA), and evaluated with observed Tmax obtained from automatic weather stations. Minimum air temperature (Tmin) was estimated using ASA. Land surface temperature was employed in the ETo models in place of air temperature (Ta) to check the potency of its applicability. The results suggest that the PMT model with Ta as input performed better than the other ETo models, with correlation coefficient (r), averaged root mean square error (RMSE) and mean bias error (MBE) of 0.77, 0.80 mm d?1 and ?0.69 for all land cover classes. The ASA yielded better Tmax and Tmin values (r and RMSE of 0.87 and 2.17°C, and 0.87 and 2.27°C, respectively).  相似文献   
232.
ABSTRACT

The impact of climate variables on monthly reference evapotranspiration (ETo) is a critical issue in water resources management and irrigation planning. The spatio-temporal contribution of climate variables to ETo in the Pearl River Basin (PRB), China, from 1960 to 2016 were calculated based on sensitivity and relative change of each climatic variable. The results show that annual ETo total decreased by 1.64% and diminished in magnitude from the southeast to the northwest. Sunshine duration, wind speed and relative humidity decreased by 15.5%, 7.4%, and 4.0%, respectively, while average temperature increased by 4.25%. The ETo showed a positive sensitivity to all variables except relative humidity, which showed a negative sensitivity. Sunshine duration had the highest contribution of ?4.26%, and the overall decrease in ETo was mainly caused by the declines in sunshine duration and wind speed, which offset the positive impact of rises in average temperature and reduction in relative humidity.  相似文献   
233.
It has been proposed that linear regression curves can be used to estimate monthly climate variables from observed precipitation. This approach was explored by applying the MGB hydrological model to the Paraná Basin (Brazil). Linear regressions were obtained for 54 climate gauges, and most of them showed at least six months of significant correlation between monthly climate variables (sunlight hours and relative humidity) and precipitation. The regression equations were applied to 5201 raingauges to estimate monthly climate variables and evapotranspiration, and the results were compared with a scenario using long-term climate averages only. The main differences occurred in wetter periods, where negative correlations between monthly precipitation and evapotranspiration were obtained when using precipitation as a proxy. Long-term changes in the hydrological regime were assessed and showed that the effect of precipitation on relative humidity and sunlight hours seems to have a minor effect on the alterations observed in river discharge in the Paraná Basin.  相似文献   
234.
In our study, we analysed a period from 2003 to 2012 with micrometeorological data measured at a boundary-layer field site operated by the Lindenberg Meteorological Observatory – Richard-Aßmann-Observatory of the German Meteorological Service (DWD). Amongst others, these data consist of real evapotranspiration (ETr) rates measured by eddy covariance and soil water contents determined by time domain reflectometry. Measured ETr and soil water contents were compared with those simulated by a simple soil–vegetation–atmosphere transfer (SVAT) scheme consisting of the FAO56 Penman-Monteith equation and the soil water flux model Hydrus-1D. We applied this SVAT scheme using uncompensatory and compensatory root water uptake (RWU). Soil water contents and ETr rates calculated using uncompensatory RWU showed an acceptable fit to the measured ones. In comparison, the use of compensatory RWU resulted in lower model performance due to higher deviations between measured and simulated soil moisture values and ETr rates during dry summer periods.  相似文献   
235.
The degree to which the hydrologic water balance in a snow-dominated headwater catchment is affected by annual climate variations is difficult to quantify, primarily due to uncertainties in measuring precipitation inputs and evapotranspiration (ET) losses. Over a recent three-year period, the snowpack in California's Sierra Nevada fluctuated from the lightest in recorded history (2015) to historically heaviest (2017), with a relatively average year in between (2016). This large dynamic range in climatic conditions presents a unique opportunity to investigate correlations between annual water availability and runoff in a snow-dominated catchment. Here, we estimate ET using a water balance approach where the water inputs to the system are spatially constrained using a combination of remote sensing, physically based modelling, and in-situ observations. For all 3 years of this study, the NASA Airborne Snow Observatory (ASO) combined periodic high-resolution snow depths from airborne Lidar with snow density estimates from an energy and mass balance model to produce spatial estimates of snow water equivalent over the Tuolumne headwater catchment at 50-m resolution. Using observed reservoir inflow at the basin outlet and the well-quantified snowmelt model results that benefit from periodic ASO snow depth updates, we estimate annual ET, runoff efficiency (RE), and the associated uncertainty across these three dissimilar water years. Throughout the study period, estimated annual ET magnitudes remained steady (222 mm in 2015, 151 mm in 2016, and 299 mm in 2017) relative to the large differences in basin input precipitation (547 mm in 2015, 1,060 mm in 2016, and 2,211 mm in 2017). These values compare well with independent satellite-derived ET estimates and previously published studies in this basin. Results reveal that ET in the Tuolumne does not scale linearly with the amount of available water to the basin, and that RE primarily depends on total annual snowfall proportion of precipitation.  相似文献   
236.
Urban green spaces (UGS), like most managed land covers, are getting progressively affected by water scarcity and drought. Preserving, restoring and expanding UGS require sustainable management of green and blue water resources to fulfil evapotranspiration (ET) demand for green plant cover. The heterogeneity of UGS with high variation in their microclimates and irrigation practices builds up the complexity of ET estimation. In oversized UGS, areas too large to be measured with in situ ET methods, remote sensing (RS) approaches of ET measurement have the potential to estimate the actual ET. Often in situ approaches are not feasible or too expensive. We studied the effects of spatial resolution using different satellite images, with high-, medium- and coarse-spatial resolutions, on the greenness and ET of UGS using Vegetation Indices (VIs) and VI-based ET, over a 780-ha urban park in Adelaide, Australia. We validated ET with the ground-based ET method of Soil Water Balance. Three sets of imagery from WorldView2, Landsat and MODIS, and three VIs including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Enhanced Vegetation Index 2 (EVI2), were used to assess long-term changes of VIs and ET calculated from the different imagery acquired for this study (2011–2018). We found high correspondence between ET-MODIS and ET-Landsat (R2 > 0.99 for all VIs). Landsat-VIs captured the seasonal changes of greenness better than MODIS-VIs. We used artificial neural network (ANN) to relate the RS-ET and ground data, and ET-MODIS (EVI2) showed the highest correlation (R2 = 0.95 and MSE =0.01 for validation). We found a strong relationship between RS-ET and in situ measurements, even though it was not explicable by simple regressions; black box models helped us to explore their correlation. The methodology used in this research makes a strong case for the value of remote sensing in estimating and managing ET of green spaces in water-limited cities.  相似文献   
237.
The Food and Agricultural Organization of the United Nations (FAO) portal to monitor water productivity through open-access of remotely sensed derived data (WaPOR) offers continuous actual evapotranspiration and interception (ETIa-WPR) data at a 10-day basis across Africa and the Middle East from 2009 onwards at three spatial resolutions. The continental level (250 m) covers Africa and the Middle East (L1). The national level (100 m) covers 21 countries and 4 river basins (L2). The third level (30 m) covers eight irrigation areas (L3). To quantify the uncertainty of WaPOR version 2 (V2.0) ETIa-WPR in Africa, we used a number of validation methods. We checked the physical consistency against water availability and the long-term water balance and then verify the continental spatial and temporal trends for the major climates in Africa. We directly validated ETIa-WPR against in situ data of 14 eddy covariance stations (EC). Finally, we checked the level consistency between the different spatial resolutions. Our findings indicate that ETIa-WPR is performing well, but with some noticeable overestimation. The ETIa-WPR is showing expected spatial and temporal consistency with respect to climate classes. ETIa-WPR shows mixed results at point scale as compared to EC flux towers with an overall correlation of 0.71, and a root mean square error of 1.2 mm/day. The level consistency is very high between L1 and L2. However, the consistency between L1 and L3 varies significantly between irrigation areas. In rainfed areas, the ETIa-WPR is overestimating at low ETIa-WPR and underestimating when ETIa is high. In irrigated areas, ETIa-WPR values appear to be consistently overestimating ETa. The relative soil moisture content (SMC), the input of quality layers and local advection effects were some of the identified causes. The quality assessment of ETIa-WPR product is enhanced by combining multiple evaluation methods. Based on the results, the ETIa-WPR dataset is of enough quality to contribute to the understanding and monitoring of local and continental water processes and water management.  相似文献   
238.
山东半岛2000~2014年蒸散发时空分异特征   总被引:1,自引:0,他引:1  
季树新  常学礼  李鹏  宋雪燕 《水文》2017,37(6):84-90
蒸散发的时空格局分析对于合理利用水资源、水资源短缺问题的解决以及旱涝灾害预警和监测具有重要意义。基于山东半岛区域气象资料、MOD16遥感影像数据集及GIS背景信息,分析了山东半岛20002014年地表蒸散量的时空变化特征及趋势,并在年时间尺度上通过基于像元的相关分析法分析了蒸散量与降水和气温的相关性。研究结果表明:在研究时段内平均蒸散量年际波动较大,波动范围为397.9479.8mm,多年蒸散平均值为440.78mm;其中2003年和2008年蒸散量最大,分别超出平均值77.3mm和81.9mm。除水体、滨海湿地外,ET年平均值有明显的由东南向西北递减的特征,降水量和地表植被覆盖度的差异是其空间变异的主要因素。蒸散量与气象因素的相关分析表明,年平均降水量与蒸散量变化呈现明显的正相关关系(0.663),温度与蒸散量呈显著负相关关系(-0.143),NDVI与蒸散量相关性较弱(0.33)。  相似文献   
239.
蒸渗仪国内外应用现状及研究趋势   总被引:3,自引:0,他引:3  
王怡宁  朱月灵 《水文》2018,38(1):81-85
为进一步掌握水文循环的过程机理,国内外对蒸渗仪的研究和应用不断发展。分析了非称重式和称重式蒸渗仪,人工和信息化、自动化观测手段的发展,总结了国内外应用蒸渗仪的研究领域和进展,同时通过对国内外应用现状的分析,讨论了满足水文循环及蒸散发研究的新型蒸渗仪设计技术要求。  相似文献   
240.
A modified version of the Makkink equation is shown to be a suitable alternative for Penman's formula for the determination of the crop reference evapotranspiration Eref that is used in the so-called crop factor approach. Makkink's equation requires solar radiation and temperature data only. Since 1987 the Royal Netherlands Meteorological Institute has calculated Eref with the modified Makkink's formula on a routine base. Using solar radiation derived from geostationary satellites, remotely sensed estimates of crop reference evapotranspiration can be obtained. © 1998 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号