首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   145篇
  国内免费   62篇
测绘学   34篇
大气科学   116篇
地球物理   345篇
地质学   108篇
海洋学   1篇
天文学   2篇
综合类   21篇
自然地理   217篇
  2024年   5篇
  2023年   5篇
  2022年   16篇
  2021年   53篇
  2020年   53篇
  2019年   40篇
  2018年   30篇
  2017年   36篇
  2016年   30篇
  2015年   31篇
  2014年   51篇
  2013年   89篇
  2012年   50篇
  2011年   48篇
  2010年   31篇
  2009年   25篇
  2008年   34篇
  2007年   30篇
  2006年   20篇
  2005年   29篇
  2004年   24篇
  2003年   14篇
  2002年   14篇
  2001年   18篇
  2000年   15篇
  1999年   8篇
  1998年   13篇
  1997年   10篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1983年   1篇
排序方式: 共有844条查询结果,搜索用时 718 毫秒
11.
Land surface evapotranspiration is an important component both in earth surface heat and water bal-ance, on whose budgets weather and climate depend, to a great extent, for their changes are responsible for the formation and variation of vegetation features on the globe. Besides, the evapotranspiration is an im-portant topic of short-term flood forecasting and the estimation of runoff from mountainous sides. As a result, the problem as to the evapotranspiration has been one of the concerns in …  相似文献   
12.
旱作春小麦蒸散量测算方法的比较   总被引:7,自引:0,他引:7  
采用波文比—能量平衡法和蒸渗计对农田蒸散量进行了为期3a的对比观测试验。结果表明,在半干旱雨养农业区,两者测算的农田蒸散量平均偏差为20%,波文比—能量平衡法计算值大于蒸渗计实测值,基本满足精度要求;无感热平流时两种方法所得蒸散量相关性较有感热平流时的好;在平流逆温状态下采用波文比—能量平衡法的计算误差大于非平流状态下的计算误差;由于蒸渗计隔断了与周围农田的水热交换,导致了蒸渗计测量的蒸散量较采用波文比—能量平衡法的计算值偏低,其偏差大小需要进一步试验确定。  相似文献   
13.
Adequate irrigation inputs are essential for the application of hydrological models in irrigated catchments, but reliable data on both the amount and the frequency of irrigation applications are often missing at an appropriate spatial scale. In this paper, we demonstrate and test approaches to estimate irrigation inputs for distributed hydrological modelling. In this context, the Soil and Water Assessment Tool was applied to simulate water balances for an irrigated catchment in southeast Australia during the period 2008–2010. Two methods for estimating irrigation inputs were tested. One method was based on a fixed irrigation application rate, whereas the other one had variable irrigation rates depending on season and the irrigated crop. These two approaches were also compared with the ‘auto‐irrigation’ method within the Soil and Water Assessment Tool model. The method with variable irrigation rates resulted in the most reasonable interpretation of the readily available irrigation data, consistent estimates of irrigation runoff coefficients throughout the year and the best fit to observed data on both drain flows at the catchment outlet and spatial evapotranspiration patterns. We also found that the different irrigation inputs significantly affected simulated water balances, in particular deep percolation under relatively dry climatic conditions. All these results suggest that it is possible to infer irrigation inputs from readily available data and local knowledge, adequate for hydrological modelling in irrigated catchments. Our study also demonstrates that, in order to predict reliable water balances in irrigated catchments, an accurate knowledge of irrigation scheduling and irrigation runoff is required. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
14.
Mass and energy transfer between soil, vegetation and atmosphere is the process that allows to maintain an adequate energy and water balance in the earth–atmosphere system. However, the evaluation of the energy balance components, such as the net radiation and the sensible and latent heat fluxes, is characterized by significant uncertainties related to both the dynamic nature of heat transfer processes and surfaces heterogeneity. Therefore, a detailed land use classification and an accurate evaluation of vegetation spatial distribution are required for an accurate estimation of these variables. For this purpose, in the present article, a pixel‐oriented supervised classification was applied to obtain land use maps of the Basilicata region in Southern Italy by processing three Landsat TM and ETM+ satellite images. An accuracy analysis based on the overall accuracy index and the agreement Khat of Cohen coefficient showed a good performance of the applied classification methodology and a good quality of the obtained maps. Subsequently, these maps were used in the application of a simplified two‐source energy balance model for estimating the actual evapotranspiration at a regional scale. The comparison between the simulations made by applying the simplified two‐source energy balance model and the measurements of evapotranspiration at a lysimetric station located in the study area showed the applicability and the validity of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
15.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
16.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
17.
Canopy interception and its evaporation into the atmosphere during irrigation or a rainfall event are important in irrigation scheduling, but are challenging to estimate using conventional methods. This study introduces a new approach to estimate the canopy interception from measurements of actual total evapotranspiration (ET) using eddy covariance and estimation of the transpiration from measurements of sap flow. The measurements were conducted over a small‐scale sprinkler‐irrigated cotton field before, during and after sprinkler irrigation. Evaporation and sap flow dynamics during irrigation show that the total ET during irrigation increased significantly because of the evaporation of free intercepted water while transpiration was suppressed almost completely. The difference between actual ET and transpiration (sap flow) during and immediately following irrigation (post irrigation) represents the total canopy evaporation while the canopy interception capacity was calculated as the difference between actual ET and transpiration (sap flow) during drying (post irrigation) following cessation of the irrigation. The canopy evaporation of cotton canopy was calculated as 0.8 mm, and the interception capacity was estimated to be 0.31 mm of water. The measurement uncertainty in both the non‐dimensional ET and non‐dimensional sap flow was shown to be very low. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
18.
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to compare estimates of ET specifically at 3 native vegetation restoration sites during 2014 planned flow events, and MODIS data were used to evaluate long‐term (2002–2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0–10 mm d?1 across sites, and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS‐derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.  相似文献   
19.
In order to reduce the uncertainty of offline land surface model(LSM) simulations of land evapotranspiration(ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS(Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs(BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over mainland China during 1982–2007. The results showed that various simulations of each member and their arithmetic mean(Ens Mean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates(Obs MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens Mean was closer to Obs MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs MTE and Ens Mean exhibited a significant increasing trend during 1982–98; whereas after 1998, when the last big EI Ni ?no event occurred, the Ens Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China.  相似文献   
20.
以三江源东部河曲高寒草甸为研究对象,通过分析1991—2015年气温、降水、潜在蒸散、湿润指数和牧草产量变化特征,探讨了地区干湿状况对牧草产量的影响。研究表明:1991—2015年河曲高寒草甸潜在蒸散以3.5 mm·a-1的速率增加(P<0.01),在年降水量按2.3 mm·a-1呈非显著性(P>0.05)增加的趋势下,地区干湿状况基本保持平稳(多年均值为0.52),隶属于半湿润气候区。25年来牧草干重产量平均为303.7 g·m-2,并以3.0 g·m-2·a-1的速率下降。分析牧草产量与影响干湿状况的气候因素之间的相关性发现,气温对牧草产量影响不明显(P>0.05),降水量表现为正相关关系(P>0.10),说明该区域降水是牧草产量提高与否的主导因素;牧草产量与潜在蒸散表现为负相关关系(P>0.10),与湿润指数表现为正相关关系(P>0.10);在生长季时期,牧草产量与降水量、潜在蒸散和湿润指数的相关性关系达到了显著水平(P<0.10),说明牧草产量在生长季对地区环境条件湿润与否较为敏感。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号