首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1405篇
  免费   354篇
  国内免费   694篇
测绘学   129篇
大气科学   294篇
地球物理   719篇
地质学   930篇
海洋学   228篇
天文学   5篇
综合类   67篇
自然地理   81篇
  2024年   6篇
  2023年   20篇
  2022年   63篇
  2021年   84篇
  2020年   115篇
  2019年   114篇
  2018年   61篇
  2017年   67篇
  2016年   80篇
  2015年   77篇
  2014年   86篇
  2013年   101篇
  2012年   121篇
  2011年   159篇
  2010年   148篇
  2009年   136篇
  2008年   104篇
  2007年   116篇
  2006年   133篇
  2005年   91篇
  2004年   87篇
  2003年   95篇
  2002年   55篇
  2001年   72篇
  2000年   44篇
  1999年   48篇
  1998年   40篇
  1997年   33篇
  1996年   16篇
  1995年   26篇
  1994年   15篇
  1993年   15篇
  1992年   8篇
  1991年   5篇
  1990年   5篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   1篇
排序方式: 共有2453条查询结果,搜索用时 31 毫秒
31.
This paper proposes a simple lattice model for collapse analysis of RC bridges subjected to earthquakes by using the extended distinct element method (EDEM). In the model, a concrete element consists of lumped masses connected to one another by springs, and a reinforcement bar is represented by a discrete model or an integrated model. The proposed lattice model is simple but its parameters are reasonably defined. It has fewer element nodes and connecting springs, which will be of benefit by shortening the CPU time. The processes to determine the initial stiffness of concrete and steel springs, the parameters of the constitutive model and the fracture criteria for springs are described. A re‐contact spring model is also proposed to simulate the re‐contact of the concrete after fracture of springs; and a general grid searching method is used to decrease the CPU time for judging re‐contact after fracture. The lattice model is assessed by numerical simulations and experiments. As an application, a damaged single‐column pier subjected to the Kobe Earthquake in 1995 is analysed by EDEM with the proposed model. The simulation results indicate that the proposed model predicts well qualitatively the collapse process of RC bridges. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
32.
In the new trend of seismic design methodology, the static pushover analysis is recommended for simple or regular structures whilst the time‐history analysis is recommended for complex structures. To this end, the applicable range of the pushover analysis has to be clarified. This study aims at investigating the applicability of pushover analysis to multi‐span continuous bridge systems with thin‐walled steel piers. The focus is concentrated on the response demand predictions in longitudinal or transverse directions. The pushover analysis procedure for such structures is firstly summarized and then parametric studies are carried out on bridges with different types of superstructure‐pier bearing connections. The considered parameters, such as piers' stiffness distribution and pier–0.5ptdeck stiffness ratio, are varied to cover both regular and irregular structures. Finally, the relation of the applicability of pushover analysis to different structural formats is demonstrated and a criterion based on the higher modal contribution is proposed to quantitatively specify the applicable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
33.
Cyclic tests on two large‐scale models of existing bridge piers with rectangular hollow cross‐section were performed in the ELSA laboratory. The prototype structure is an existing reinforced concrete highway bridge constructed in Austria in 1975. The piers presented several seismic deficiencies and consequently they showed poor hysteretic behaviour and limited deformation capacity as well as undesirable failure modes that do not comply with the requirements of modern codes for seismic‐resistant structures. Experimental data are compared to numerical and empirical predictions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
34.
The Vincent Thomas Bridge in the Los Angeles metropolitan area, is a critical artery for commercial traffic flow in and out of the Los Angeles Harbor, and is at risk in the seismically active Southern California region, particularly because it straddles the Palos Verdes fault zone. A combination of linear and non‐linear system identification techniques is employed to obtain a complete reduced‐order, multi‐input–multi‐output (MIMO) dynamic model of the Vincent Thomas Bridge based on the dynamic response of the structure to the 1987 Whittier and 1994 Northridge earthquakes. Starting with the available acceleration measurements (which consists of 15 accelerometers on the bridge structure and 10 accelerometers at various locations on its base), an efficient least‐squares‐based time‐domain identification procedure is applied to the data set to develop a reduced‐order, equivalent linear, multi‐degree‐of‐freedom model. Although not the main focus of this study, the linear system identification method is also combined with a non‐parametric identification technique, to generate a reduced‐order non‐linear mathematical model suitable for use in subsequent studies to predict, with good fidelity, the total response of the bridge under arbitrary dynamic environments. Results of this study yield measurements of the equivalent linear modal properties (frequencies, mode shapes and non‐proportional damping) as well as quantitative measures of the extent and nature of non‐linear interaction forces arising from strong ground shaking. It is shown that, for the particular subset of observations used in the identification procedure, the apparent non‐linearities in the system restoring forces are quite significant, and they contribute substantially to the improved fidelity of the model. Also shown is the potential of the identification technique under discussion to detect slight changes in the structure's influence coefficients, which may be indicators of damage and degradation in the structure being monitored. Difficulties associated with accurately estimating damping for lightly damped long‐span structures from their earthquake response are discussed. The technical issues raised in this paper indicate the need for added spatial resolution in sensor instrumentation to obtain identified mathematical models of structural systems with the broadest range of validity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
35.
The geochemical reference material BHVO-1 was analysed by a variety of techniques over a six year period. These techniques included inductively coupled plasma-mass spectrometry and atomic emission spectroscopy (ICP-MS and ICP-AES, respectively), laser ablation ICP-MS and spark source mass spectroscopy. Inconsistencies between the published consensus values reported by Gladney and Roelandts (1988, Geostandards Newsletter) and the results of our study are noted for Rb, Y, Zr, Pb and Th. The values reported here for Rb, Y, Zr and Pb are generally lower, while Th is higher than the consensus value. This is not an analytical artefact unique to the University of Notre Dame ICP-MS facility, as most of the BHVO-1 analyses reported over the last ten to twenty years are in agreement with our results. We propose new consensus values for each of these elements as follows: Rb = 9.3 ± 0.2 μg g-1 (compared to 11 ± 2 μg g-1), Y = 24.4 ± 1.3 μg g-1 (compared to 27.6 ± 1.7 μg g-1), Zr = 172 ± 10 μg g-1 (compared to 179 ± 21 μg g-1), Pb = 2.2 ± 0.2 μg g-1 (compared to 2.6 ± 0.9 μg g-1) and Th = 1.22 ± 0.02 μg g-1 (compared to 1.08 ± 0.15 μg g-1).  相似文献   
36.
严邦良 《大气科学》2003,27(3):354-368
建立一个中等复杂程度的海-气耦合模式研究东、西边界反射,纬向平流项-u′(δ)(T+T′)/(δ)x在ENSO循环位相转换中的作用及东、西边界反射与纬向异常流(u′) 符号改变的关系.结果得到:u′超前Nio3区SSTA位相转变的原因是东、西边界反射造成的.Sverdrup 平衡时所产生的地转流(ur)与东、西边界反射所产生的地转流(ur)的方向在大部分时间里是相反的,同时ur与风应力强迫之间大约有9个月的滞后时间(Kelvin波从180°E出发经东边界反射产生的Rossby波到达180°E时间).在模式ENSO事件消亡过程中的某一时刻以后,边界反射产生的调整过程变为主要过程,u′主要由ur来决定,这样就造成了u′的反向先于Nio区SSTA的反向.它实际上是海洋的调整过程与风应力强迫之间滞后关系的一种反映.敏感性数值试验表明,取消东边界反射,耦合模式能够模拟ENSO循环,但其周期比控制试验的周期短一年(3年).取消-u′(δ)(T+T′)/(δ)x,耦合模式能够模拟ENSO循环,但其周期比控制试验的周期长2年(6年).  相似文献   
37.
Measurements from the Baltic Sea and a wind-over-wave coupled model are used to study the wave impact on the sea drag. The study has been carried out for different wave conditions, namely a pure wind-sea, following-swell/ mixed sea and cross-swell/ mixed sea. Measurements reveal the fact that the sea drag is dependent on the sea-state. In stationary conditions and in the absence of severe cross-swell, swell reduces drag compared to wind-sea at the same wind speed. The cross-swell enhances the drag as compared to the following-swell case and the magnitude of the drag coefficient is increased with increasing the angle of swell propagation to the wind. It is shown that the agreement between the model results and measurements is good for pure wind-sea and stationary mixed-sea cases. Discrepancies occur at light winds, where most of the data represent pure swell conditions. During these pure swell conditions the data are characterized by a large variation of the drag coefficient. The variation is caused by mesoscale variability in the stress co-spectra, wind-cross-swell effects and nonstationarity in the wave and wind fields not represented in the model.  相似文献   
38.
热敏半导体器件中电位与温度满足的方程组,是一个椭圆-抛物耦合组,并带有混合边界条件。利用不动点定理可证明该问题解的存在性。  相似文献   
39.
In this paper we document the correlationship between sea surface temperature(SST) and low level-winds such as sea level wind and 850 hPa wind in the South China Sea(SCS) based on COADS(1958-1987) and ECMWF objective analysis data(1973-1986).Further statistical analyses tell us that there is a fixed SCS basin mode for variations both of SST and low-level winds in the region on the interannual time scale due to air-sea interactions.A simplified,coupled model that is designed following the McCreary and Anderson's(1985) model and includes the feedback between the upper ocean and the circulation of East Asian monsoon demonstrates an interannual oscillation in the coupled air-sea system,which is similar to the observations in the SCS.  相似文献   
40.
A coupled model,which is employed to study the dominating factor and key area of El Nino cycle formation,consists of a dynamical ocean model and a statistical atmospheric model.The coupled model with seasonal forcing successfully reproduces the El Nino event cycle which exhibits quasi-regular oscillations with a preferred period of about 4 years.The results show that the heat content(HC) is transported between the eastern and the western tropical Pacific areas.The spatial distribution of HC anomalies for four phases of the whole cycle clearly shows a possible formation mechanism of El Nino.Experiments further suggest that sea surface temperature in the tropical Pacific and HC in the central tropical Pacific are the most important factors and the central tropical Pacific is the most important area for determining formation of El Nino cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号