Based on the high-order crustal magnetic field model NGDC-720-V3, we investigate the distribution of crustal magnetic anomaly, the decay characteristics of the anomaly, and the relationship between the magnetic anomaly and geological structure in Xinjiang, China. Topography of the magnetic layer basement is studied through Curie isothermal surface using the power spectrum method. It is found that south Tarim Basin, Junggar Basin, and Turpan–Hami Basin have strong positive magnetic anomaly, whereas west Kunlun Mountain, Altun Mountain, Tianshan Mountain, and Altai Mountain have weak or negative anomaly. The magnetic anomaly well reflects the regional tectonic structure, i.e., three alternating mountains intervened by two basins. The magnetic anomaly on the ground surface in Tarim Basin is well corresponding to the mafic dykes. The decay of the magnetic anomaly with altitude indicates that Xinjiang is a large massif composed of several magnetic blocks with different sizes in different directions. The Curie surface presents a feature of being shallow under mountains whereas being deep under basins, roughly having an anti-mirror correspondence with the Moho depth. 相似文献
Based on the measurement of the arrival time of maxima magnitude from band-pass filtering signals which were determined using a new Morlet wavelet multiple-filter method, we develop a method for measuring intrinsic and attenuative dispersion of the first cycle direct P-wave. We determine relative group delays of spectral components of direct P-waves for 984 ray paths from SML and ALS stations of the Taiwan Central Weather Bureau Seismic Network (CWBSN). Using continuous relaxation model, we deduce a new transfer function that relates intrinsic dispersion to attenuation. Based on the genetic algorithm (GA), we put forward a new inversion procedure for determining which is defined the flat part of quality factor Q(ω) spectrum, τ1 and τ2 parameters. The results indicate that ① The distribution of Qm values versus epicentral distance and depth show that Qm values linearly increase with increasing of epicentral distance and depth, and Qm values is clearly independent of earthquakes magnitude; ② In the different depth ranges, Qm residual show no correlation with variations in epicentral distance. Some significant changes of Qm residual with time is likely caused by pre-seismic stress accumulation, and associated with fluid-filled higher density fractures rock volume in the source area of 1999 Chi-Chi Taiwan earthquake. We confirm that Qm residual with time anomaly appears about 2.5 years before the Chi-Chi earthquake; ③ A comparison of Qm residual for different depth range between SML and ALS stations show that the level of stress has vertical and lateral difference; ④ The area near observation station with both anomalously increasing and decreasing averaged Qm residual is likely an unstable environment for future strong earthquake occurrence. This study demonstrates the capability of direct P-waves dispersion for monitoring attenuation characteristics and its state changes of anelastic medium of the Earth at short propagation distance using seismograms recorded from very small events.