首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13016篇
  免费   2945篇
  国内免费   3130篇
测绘学   253篇
大气科学   3477篇
地球物理   3401篇
地质学   7210篇
海洋学   1387篇
天文学   177篇
综合类   668篇
自然地理   2518篇
  2024年   89篇
  2023年   247篇
  2022年   420篇
  2021年   591篇
  2020年   603篇
  2019年   611篇
  2018年   581篇
  2017年   623篇
  2016年   686篇
  2015年   665篇
  2014年   838篇
  2013年   1219篇
  2012年   828篇
  2011年   781篇
  2010年   742篇
  2009年   896篇
  2008年   933篇
  2007年   899篇
  2006年   795篇
  2005年   719篇
  2004年   672篇
  2003年   599篇
  2002年   554篇
  2001年   449篇
  2000年   437篇
  1999年   379篇
  1998年   364篇
  1997年   334篇
  1996年   290篇
  1995年   267篇
  1994年   207篇
  1993年   182篇
  1992年   143篇
  1991年   106篇
  1990年   87篇
  1989年   81篇
  1988年   55篇
  1987年   43篇
  1986年   28篇
  1985年   13篇
  1984年   11篇
  1983年   8篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
We present a linear Boltzmann equation to model wave scattering in the Marginal Ice Zone (the region of ocean which consists of broken ice floes). The equation is derived by two methods, the first based on Meylan et al. [Meylan, M.H., Squire, V.A., Fox, C., 1997. Towards realism in modeling ocean wave behavior in marginal ice zones. J. Geophys. Res. 102 (C10), 22981–22991] and second based on Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136]. This linear Boltzmann equation, we believe, is more suitable than the equation presented in Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136] because of its simpler form, because it is a differential rather than difference equation and because it does not depend on any assumptions about the ice floe geometry. However, the linear Boltzmann equation presented here is equivalent to the equation in Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136] since it is derived from their equation. Furthermore, the linear Boltzmann equation is also derived independently using the argument in Meylan et al. [Meylan, M.H., Squire, V.A., Fox, C., 1997. Towards realism in modeling ocean wave behavior in marginal ice zones. J. Geophys. Res. 102 (C10), 22981–22991]. We also present details of how the scattering kernel in the linear Boltzmann equation is found from the scattering by an individual ice floe and show how the linear Boltzmann equation can be solved straightforwardly in certain cases.  相似文献   
72.
73.
Wet atmospheric deposition of dissolved N, P and Si species is studied in well-mixed coastal ecosystem to evaluate its potential to stimulate photosynthetic activities in nutrient-depleted conditions. Our results show that, during spring, seawater is greatly depleted in major nutrients: Dissolved Inorganic Nitrogen (DIN), Dissolved Inorganic Phosphorus (DIP) and Silicic acid (Si), in parallel with an increase of phytoplanktonic biomass. In spring (March–May) and summer (June–September), wet atmospheric deposition is the predominant source (>60%, relative to riverine contribution) for nitrates and ammonium inputs to this N-limited coastal ecosystem. During winter (October–February), riverine inputs of DIN predominate (>80%) and are annually the most important source of DIP (>90%). This situation allows us to calculate the possibility for a significant contribution to primary production in May 2003, from atmospheric deposition (total input for DIN ≈300 kg km−2 month−1). Based on usual Redfield ratios and assuming that all of the atmospheric-derived N (AD-N) in rainwater is bioavailable for phytoplankton growth, we can estimate new production due to AD-N of 950 mg C m−2 month−1, during this period of depletion in the water column. During the same episode (May 2003), photosynthetic activity rate, considered as gross primary production, was estimated to approximately 30 300 mg C m−2 month−1. Calculation indicates that new photosynthetic activity due to wet atmospheric inputs of nitrogen could be up to 3%.  相似文献   
74.
A model for the depth-limited distribution of the highest wave in a sea state is presented. The distribution for the extreme wave height is based on a probability density function (pdf) for depth-limited wave height distribution for individual waves [Méndez, F.J., Losada, I.J., Medina, R. 2004. Transformation model of wave height distribution. Coastal Eng, Vol. 50, 97:115.] and considers the correlation between consecutive waves. The model is validated using field data showing a good representation of the extreme wave heights in the surf zone. Some important statistical wave heights are parameterized obtaining useful expressions that can be used in further calculations.  相似文献   
75.
本文提出在小偏心受压构件正截面强度计算中,取消弯曲抗压强度fcm(Rw),采用轴心抗压强度fc,这与构件的实际破坏形态相符。对小偏心受压构件正截面强度计算提出了设计建议。特别是对工程上大量应用的矩形截面对称配筋小偏压构件提示了简捷的设计方法,与以往的近似计算方法相比具有物理概念明确,精度高,方法简捷的特点。  相似文献   
76.
During three cruises in the Black Sea, organised in July 1995 and April–May 1997, biological and chemical parameters that can influence the carbon budget were measured in the water column on the NW shelf, particularly in the mixing zone with Danube River waters. We observed in early spring (end of April–May) conditions an important input of freshwater organisms that enhanced the microbial activity in the low salinity range. High bacterial activity regenerates nitrogen in the form of nitrates, but is also responsible for an important consumption of ammonium and phosphate, leading to a high N/P ratio and a strong deficit in phosphorus. The consequence is a limitation of phytoplankton development but also a production of carbohydrates that accumulate all along the salinity gradient. These mechanisms are responsible for a seasonal accumulation of dissolved organic carbon (DOC) that increases from 210 μM in winter to about 280 μM in summer. All this excess DOC disappears during winter, probably degraded by bacterial activity. The degradation of carbon-rich organic matter increases the phosphorus demand by bacteria bringing limitation to phytoplankton primary production.  相似文献   
77.
A repeat hydrographic section has been maintained over two decades along the 180° meridian across the subarctic-subtropical transition region. The section is naturally divided into at least three distinct zones. In the Subarctic Zone north of 46°N, the permanent halocline dominates the density stratification, supporting a subsurface temperature minimum (STM). The Subarctic Frontal Zone (SFZ) between 42°–46°N is the region where the subarctic halocline outcrops. To the south is the Subtropical Zone, where the permanent thermocline dominates the density stratification, containing a pycnostad of North Pacific Central Mode Water (CMW). The STM water colder than 4°C in the Subarctic Zone is originated in the winter mixed layer of the Bering Sea. The temporal variation of its core temperature lags 12–16 months behind the variations of both the winter sea surface temperature (SST) and the summer STM temperature in the Bering Sea, suggesting that the thermal anomalies imposed on the STM water by wintertime air-sea interaction in the Bering Sea spread over the western subarctic gyre, reaching the 180° meridian within a year or so. The CMW in this section originates in the winter mixed layer near the northern edge of the Subtropical Zone between 160°E and 180°. The CMW properties changed abruptly from 1988 to 1989; its temperature and salinity increased and its potential density decreased. It is argued that these changes were caused by the climate regime shift in 1988/1989 characterized by weakening of the Aleutian Low and the westerlies and increase in the SST in the subarctic-subtropical transition region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
78.
79.
Identification of the distinctive circulation patterns of storminess on the Atlantic margin of Europe forms the main objective of this study; dealing with storm frequency, intensity and tracking. The climatology of the extratropical cyclones that affect this region has been examined for the period 1940–1998. Coastal meteorological data from Ireland to Spain have been linked to the cyclone history for the North Atlantic in the analysis of storm records for European coasts. The study examines the evolution in the occurrence of storms since the 1940s and also their relationship with the North Atlantic Oscillation (NAO). Results indicate a seasonal shift in the wind climate, with regionally more severe winters and calmer summers established. This pattern appears to be linked to a northward displacement in the main North Atlantic cyclone track.

An experiment with the ECHAM4 A-GCM at high resolution (T106) has also been used to model the effect of a greenhouse gases induced warming climate on the climatology of coastal storms in the region. The experiment consists of (1), a 30-year control time-slice representing present-day equivalent CO2 concentrations and (2), a 30-year perturbed period corresponding to a time when the radiative forcing has doubled in terms of equivalent CO2 concentrations. The boundary conditions have been obtained from an atmosphere-ocean coupled OA-GCM simulation at low horizontal resolution. An algorithm was developed to allow the identification of individual cyclone movements in selected coastal zones. For most of the northern part of the study region, covering Ireland and Scotland, results describe the establishment by ca. 2060 of a tendency for fewer but more intense storms.

The impacts of these changes in storminess for the vulnerability of European Atlantic coasts are considered. For low-lying, exposed and ‘soft’ sedimentary coasts, as in Ireland, these changes in storminess are likely to result in significant localised increases in coastal erosion.  相似文献   

80.
The pollen analysis of DGKS9617 core in the East China Sea (covering about the last 6800 years) shows five obvious pollen assemblages and seven sub-assemblages. Combined with the sediment and the result of diatom analysis, the climate changes are reconstructed during the Middle and Late Holocene. Corresponding to the pollen assemblages, the climate shifts just as follows: Assemblage Ⅰ-Warm and Dry Stage, Assemblage Ⅱ-Cool and Humid Stage, Assemblage Ⅲ-Hot and Dry Stage (the mean annual temperature is 2~3 ℃ higher than that today ), Assemblage Ⅳ-Cool and Humid Stage, Assemblage Ⅴ-Wann and Dry Stage. The third stage is divided into three substages i.e. a slight colder and dry one, a slight wanner and humid one and a slight warmer and dry one. During the fifth stage, the climate becomes similar to that today with three warm substages and two cool substages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号