首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   915篇
  免费   151篇
  国内免费   148篇
测绘学   61篇
大气科学   134篇
地球物理   211篇
地质学   541篇
海洋学   103篇
天文学   1篇
综合类   66篇
自然地理   97篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   7篇
  2019年   6篇
  2018年   13篇
  2017年   21篇
  2016年   15篇
  2015年   9篇
  2014年   25篇
  2013年   19篇
  2012年   43篇
  2011年   53篇
  2010年   50篇
  2009年   77篇
  2008年   86篇
  2007年   88篇
  2006年   99篇
  2005年   67篇
  2004年   82篇
  2003年   68篇
  2002年   59篇
  2001年   74篇
  2000年   47篇
  1999年   29篇
  1998年   22篇
  1997年   28篇
  1996年   25篇
  1995年   36篇
  1994年   18篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1954年   1篇
排序方式: 共有1214条查询结果,搜索用时 11 毫秒
31.
沈博  吴蓉元 《物探与化探》1995,19(5):351-359
零位校正误差是重力仪除标定以外最主要的误差来源.本文根据作者数年来从事高精度重力勘探工作中所积累的资料,对此问题进行了较为全面客观的分析研究.(l)对Lacoste-Romberg重力仪的正常零位变化和零位突变特性提出了分析结论;(2)对实测资料采用动、静分高处理方法,分析了重力仪连续工作时(数日至数十日)由于零位非线性变化可能引起的零位校正误差;(3)通过对实测资料的分析计算,得到了零位突变对重力仪观测精度影响的参考值;(4)针对重力仪使用中的实际问题提出了改善零位移线性度的实施对策.  相似文献   
32.
马福荣  张信贵 《岩土力学》2005,26(Z2):123-125
根据南宁几大工程的泥岩物理试验参数,分析了南宁盆地第三系泥岩物理指标与强度的关系,得出物理指标与强度之间具有近似的单一关系,抗剪强度随含水量、孔隙比的减小而增大,而随干重度趋势的增大而增大。  相似文献   
33.
矿物纤维粉尘的表面特性及对生物活性的影响   总被引:8,自引:0,他引:8  
通过对矿物纤维粉尘对人体的危害性及对环境影响的研究,提出了一些矿物产生毒理作用过程的假说和因素判定;研究了矿物与生物体之间的相互作用时应重视矿物表面-细胞物理化学作用,并依据初步试验提出表面特征是矿物纤维表征生物活性的关键因子(如表面活性域、催化作用等),而纤维性只是矿物表面特性的表征因素之一。  相似文献   
34.
广西十万大山盆地下二叠统生物礁古油藏及隐伏礁预测   总被引:16,自引:3,他引:16  
陈学时  耿忠霞 《地质学报》1999,73(4):350-359
广西宁明县亭亮下二叠统茅口组生物礁古油藏,为十万大山盆地已暴露破坏的礁古油藏之一。该古油藏的含沥青储层主要分布于礁体的上部和顶部,含沥青礁灰岩厚达98m以上,礁储层次生溶孔的形成与分布主要受控于深埋有机溶剂作用,同时在空间上还与礁顶部古风化壳和不整合面密切相关,论文深入探讨了礁古油藏形成的主要成岩作用类型及其埋藏一构造发展史,有机质演化史及成岩孔隙演化史三者的配置关系和成藏机理,另据地震和电法资料  相似文献   
35.
乌鲁木齐市低空温度层结与采暖期大气污染的关系   总被引:12,自引:5,他引:12  
为了找出乌鲁木齐市低空逆温对大气污染的影响规律,为治理和预测大气污染提供科学依据,利用2000年6月至2006年4月的乌鲁木齐市空气污染监测资料和气象站的探空、地面资料,分析了大气污染与逆温的对应特征。结果表明:乌鲁木齐市低空逆温的出现频率与大气污染指数具有相似的时间分布特征。采暖期空气污染指数API值越大,相对应出现逆温日的比例越高,以贴地逆温多;在污染源排放量一定的情况下,大气中污染物浓度与低空逆温层厚度、逆温层底高、逆温层顶底温差有显著的统计关系,而与逆温层中的逆温强度统计关系不显著。随着逆温层底高度降低,逆温层平均顶高、厚度、逆温层顶底温差的增大,日平均气温、最低气温、最高气温的降低,污染级别呈增加趋势;在采暖期同一时段内,要达到同样的污染级别,悬浮逆温日污染物容纳量比贴地逆温大,贴地逆温更容易造成空气污染;在污染物排放量相同的情况下,污染的程度主要取决于悬浮逆温层的底高和厚度及持续日数。  相似文献   
36.
The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10―26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, I.e. The vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, I.e. Resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in comparison with those at 8 m height. On pollution days, in company with the low wind speed, there existed two shallow inversion layers in the boundary layer, but aerosols might be, to some extent, mixed below the inversion layer, therefore, on the pollution day the concentrations of PM2.5 and PM10 dropped with height slowly; and the observational results also show that the concentrations at 320 m height were obviously high under SW and SE winds, but at other heights, the concentrations were not correlated with wind directions. The computational results of footprint analysis suggest that this was due to the fact that the 320 m height was impacted by the pollutants transfer of southerly flow from the southern peripheral heavier polluted areas, such as Baoding, and Shijiazhuang of Hebei Province, Tianjin, and Shandong Province, etc., while the low layer was only affected by Beijing's local pollution source. The computational results of power spectra and periods preliminarily reveal that under the condition of calm weather, the periods of PM10 concentration at various heights of the tower were on the order of minutes, while in cases of larger wind speed, the concentrations of PM2.5 and PM10 at 320 m height not only had the short periods of minute-order, but also the longer periods of hour order. Consistent with the conclusion previously drawn by Ding et al., that air pollutants at different heights and at different sites in Beijing had the character of "in-phase" variation, was also observed for the diurnal variation and mean diurnal variation of PM2.5 and PM10 at various heights of the tower in this experiment, again confirming the "in-phase" temporal/spatial distributive character of air pollutants in the urban canopy of Beijing. The gentle double-peak character of the mean diurnal variation of PM2.5 and PM10 was closely related with the evident/similar diurnal variation of turbulent momentum fluxes, sensible heat fluxes, and turbulent kinetic energy at various heights in the urban canopy. Besides, under the condition of calm weather, the concentration of PM2.5 and PM10 declined with height slowly, it was 90% of 8 m concentration at the low layer, a little lesser than 90% at the middle layer, and 80% at the high layer, respectively. Under the condition of weak cold air weather, the concentration remarkably dropped with height, it was 70% of 8 m concentration at the low layer, and 20%―30% at the middle and high layers, especially the concentration of PM2.5 was even lower.  相似文献   
37.
木里煤田是青海省重要的煤产地,煤类以炼焦用煤为主。聚乎更矿区四井田位于木里煤田的最西端,经详查、勘探提交煤炭资源量2.5亿t,煤类为气煤、1/3焦煤、焦煤、1/2中粘煤、弱粘、瘦煤、贫瘦煤、贫煤、不粘煤。通过对下2煤层物理性质、化学性质、煤岩特征及煤类的统计分析,认为区内同一煤层的变质程度随含煤地层和上覆岩系的总厚度增大而增高,在垂向上随煤层层位的降低而增高;四井田总体构造形态为倾向南西的单斜构造,其煤类分布总体表现北东到南西沿煤层倾向变质程度逐渐增高,沿煤层走向呈带状分布,但在井田边界断层附近煤的变质程度要比其它地段相同深度煤层的变质程度稍高;四井田煤的变质作用类型主要为深成变质作用,部分地段受动力变质作用影响。  相似文献   
38.
大渡河金川-巴底河段河流地貌特征研究   总被引:1,自引:0,他引:1  
对大渡河中游金川-巴底河段水系格局、河谷形态、河流阶地及第四纪沉积物进行研究,分析河流地貌的发育特征、影响因素以及发育演化史,为区域稳定性评价提供依据。研究表明,该区域为具有夷平面的深切峡谷地貌区,发育三级夷平面和4~6级阶地,河流地貌发育经历三个阶段,河流地貌的形成与演化受构造、岩性影响明显。  相似文献   
39.
青藏高原四季划分方法探讨   总被引:2,自引:0,他引:2  
利用中国气象局国家气象信息中心提供的青藏高原60个测站1961~2007年逐日气温资料,分析常用的四季划分方法在高原的适用性,指出各种四季划分方法的不足和局限,并根据四季持续时间的合理性、物候特征、海拔高度、气候(温度)分布特征等因素提出了针对不同的生产、生活目的而建立的新四季划分方法。探讨认为:(1)根据高原物候特征和气温相结合的方式得到的"物候四季划分方法"即"4℃-12℃-10℃-1℃"对高原农牧业尤为适合;(2)"海拔季节划分方法"对高原旅游和人们衣着尤为适合,海拔季节划分方法把高原分成二个区:海拔4000m以上四季划分方法为"5℃-12℃-12℃-5℃",4000m以下四季划分方法为"5℃-15℃-15℃-5℃;"(3)"生活季节划分方法"对高原不同区域的生产生活尤为适合,生活季节划分方法将高原分为三个区:Ⅰ区四季划分方法为"6℃-16℃-16℃-6℃",Ⅱ区四季划分方法为"5℃-12℃-12℃-5℃",Ⅲ区四季划分方法"7℃-7℃"划分春冬和秋冬,不存在夏季。最后,综合以上各种方法的优缺点,初步定义"高原普适季节划分方法"即"5℃-15℃-15℃-5℃"为高原总体的四季划分方法,对高原整体的国民经济和政府活动、旅游、人们的衣着、生活生产、季节类产品的销售具有总体的指导意义。  相似文献   
40.
研究了湛江沿海中华乌塘鳢个体生殖力及其与生物学指标的关系。结果表明 :个体绝对生殖力为 840 0~ 3 3 2 70粒 ,个体相对生殖力FL 为 5 67 6~ 1 83 3 2粒 /cm ,Fw为 1 5 5 6~ 482 7粒 /g ;个体绝对生殖力与体长、体重、空壳重、卵巢重呈直线相关 ,与年龄呈二次函数相关 ,与成熟系数和肥满度相关关系不显著 ;个体相对生殖力FL 与各生物学指标正相关 ,Fw除了与卵巢重、肥满度和年龄相关关系不显著外 ,其余均显著相关  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号