首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1533篇
  免费   190篇
  国内免费   221篇
测绘学   453篇
大气科学   249篇
地球物理   299篇
地质学   335篇
海洋学   148篇
天文学   99篇
综合类   141篇
自然地理   220篇
  2024年   2篇
  2023年   28篇
  2022年   57篇
  2021年   72篇
  2020年   94篇
  2019年   105篇
  2018年   66篇
  2017年   113篇
  2016年   88篇
  2015年   77篇
  2014年   79篇
  2013年   115篇
  2012年   108篇
  2011年   104篇
  2010年   94篇
  2009年   82篇
  2008年   87篇
  2007年   97篇
  2006年   97篇
  2005年   65篇
  2004年   49篇
  2003年   45篇
  2002年   37篇
  2001年   32篇
  2000年   34篇
  1999年   18篇
  1998年   18篇
  1997年   5篇
  1996年   17篇
  1995年   14篇
  1994年   10篇
  1993年   8篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1944条查询结果,搜索用时 203 毫秒
161.
An instrument for monitoring of the vertical profile of atmospheric optical turbulence strength, employing the Slope Detection and Ranging (SLODAR) double star technique applied to a small telescope, has been developed by Durham University and the European South Observatory. The system has been deployed at the Cerro Paranal observatory in Chile for statistical characterization of the site. The instrument is configured to sample the turbulence at altitudes below 1.5 km with a vertical resolution of approximately 170 m. The system also functions as a general-purpose seeing monitor, measuring the integrated optical turbulence strength for the whole atmosphere, and hence the seeing width. We give technical details of the prototype and present data to characterize its performance. Comparisons with contemporaneous measurements from a differential image motion monitor (DIMM) and a multi-aperture scintillation sensor (MASS) are discussed. Statistical results for the optical turbulence profile at the Paranal site are presented. We find that, in the median case, 49 per cent of the total optical turbulence strength is associated with the surface layer (below 100 m), 35 per cent with the 'free atmosphere' (above 1500 m) and 16 per cent with the intermediate altitudes (100–1500 m).  相似文献   
162.
Restricted by the observational condition and the hardware, adaptive optics can only make a partial correction of the optical images blurred by atmospheric turbulence. A postprocessing method based on frame selection and multi-frame blind deconvolution is proposed for the restoration of high-resolution adaptive optics images. By frame selection we mean we first make a selection of the degraded (blurred) images for participation in the iterative blind deconvolution calculation, with no need of any a priori knowledge, and with only a positivity constraint. This method has been applied to the restoration of some stellar images observed by the 61-element adaptive optics system installed on the Yunnan Observatory 1.2m telescope. The experimental results indicate that this method can effectively compensate for the residual errors of the adaptive optics system on the image, and the restored image can reach the diffraction-limited quality.  相似文献   
163.
An adaptive 2 D nonhydrostatic dynamical core is proposed by using the multi-moment constrained finite-volume(MCV) scheme and the Berger-Oliger adaptive mesh refinement(AMR) algorithm. The MCV scheme takes several pointwise values within each computational cell as the predicted variables to build high-order schemes based on single-cell reconstruction. Two types of moments, such as the volume-integrated average(VIA) and point value(PV), are defined as constraint conditions to derive the updating formulations of the unknowns, and the constraint condition on VIA guarantees the rigorous conservation of the proposed model. In this study, the MCV scheme is implemented on a height-based, terrainfollowing grid with variable resolution to solve the nonhydrostatic governing equations of atmospheric dynamics. The AMR grid of Berger-Oliger consists of several groups of blocks with different resolutions, where the MCV model developed on a fixed structured mesh can be used directly. Numerical formulations are designed to implement the coarsefine interpolation and the flux correction for properly exchanging the solution information among different blocks. Widely used benchmark tests are carried out to evaluate the proposed model. The numerical experiments on uniform and AMR grids indicate that the adaptive model has promising potential for improving computational efficiency without losing accuracy.  相似文献   
164.
Assumptions about fluvial processes and process–form relations are made in general models and in many site-specific applications. Many standard assumptions about reach-scale flow resistance, bed-material entrainment thresholds and transport rates, and downstream hydraulic geometry involve one or other of two types of scale invariance: a parameter (e.g. critical Shields number) has the same value in all rivers, or doubling one variable causes a fixed proportional change in another variable in all circumstances (e.g. power-law hydraulic geometry). However, rivers vary greatly in size, gradient, and bed material, and many geomorphologists regard particular types of river as distinctive. This review examines the tension between universal scaling assumptions and perceived distinctions between different types of river. It identifies limits to scale invariance and departures from simple scaling, and illustrates them using large data sets spanning a wide range of conditions. Scaling considerations and data analysis support the commonly made distinction between coarse-bed and fine-bed reaches, whose different transport regimes can be traced to the different settling-velocity scalings for coarse and fine grains. They also help identify two end-member sub-types: steep shallow coarse-bed ‘torrents’ with distinctive flow-resistance scaling and increased entrainment threshold, and very large, low-gradient ‘mega rivers’ with predominantly suspended load, subdued secondary circulation, and extensive backwater conditions. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
165.
Four runs of experimental landform development, with the same uplift rate, different rainfall intensity, and the same material of different permeability adjusted by the degree of compaction, showed complicated effects of rainfall and mound-forming material. In the run with more rainfall on less permeable material, low separated ridges developed in the uplifted area, because abundant overland flow promoted valley erosion and slope processes from early stages. In the run with less rainfall on less permeable material, valley incision proceeded mostly in major valleys where surface water converges. Canyons developed during early stages and later a high massive mountain emerged. The effect of rainfall difference, however, appeared completely opposite on more permeable material accompanied by lower shear strength. In the run with more rainfall on more permeable material, a massive mountain similar to that with less rainfall on less permeable material appeared, and low separated ridges appeared in the run with less rainfall on more permeable material as in the run with more rainfall on less permeable material. In the former case, similar amount of water available for Hortonian overland flow in early stages estimated from rainfall rate and permeability can explain the development of similar landforms. In the latter case, while abundant surface water with more rainfall on less permeable material made fluvial erosion active from early stages, the deficiency in surface water with less rainfall on more permeable material apparently attenuated fluvial erosion but possibly accentuated slope processes and slope failures by seepage water flow through more permeable material of low shear strength. The active erosion from early stages apparently resulted in the development of enduring similar low landforms later in the dynamic equilibrium stage. These experimental results indicate that similar landforms can emerge from different environmental and lithologic controls, and that process does not necessarily follow from form.  相似文献   
166.
The intensity of rainfall events with potential to cause landslides has varying temporal characteristics. In this study, the time at which the 72-h accumulated rainfall reached its maximum was used to standardize the period of rainfall measurement. The proposed standardization of the rainfall period was used in conjunction with the return level of rainfall intensity, obtained from intensity–duration–frequency curves, to investigate rainfall intensity anomalies associated with 10 hazardous rainfall events that triggered numerous landslides at the regional scale in Japan. These landslides included shallow landslides in volcanic and non-volcanic areas, as well as deep-seated landslides. The rainfall events that triggered the shallow landslides were divided into two types: downpours that repeatedly reached close to the 100-year return level within approximately 3–4 h, and accumulated rainfall that reached close to 200–400 mm over longer time intervals but within 72 h. Lithological differences seemed unrelated to the differences between the two types of shallow-landslide-triggering rainfall; however, precipitation >1000 mm was necessary to trigger deep-seated landslides. Although the characteristics of the hyetographs differed markedly among the landslide-triggering rainfall events, all the landslides could have been triggered when the mean rainfall intensity reached the 100-year rainfall level during the standardized period. Thus, the landslide trigger can be evaluated indirectly based on the increase in the return level of the mean rainfall intensity, which could provide a means for estimating the time of landslide occurrence.  相似文献   
167.
We report the development and first results of an instrument called Low Layer SCIDAR (Scintillation Detection and Ranging) (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude resolution. The method is based on the Generalized SCIDAR (GS) concept, but unlike the GS instruments which need a 1-m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star targets, which enables the high altitude resolution. Using a 200-arcsec-separation double star, we have obtained turbulence profiles with unprecedented 12-m resolution. The system incorporates necessary novel algorithms for autoguiding, autofocus and image stabilization. The results presented here were obtained at Mauna Kea Observatory. They show LOLAS capabilities but cannot be considered as representative of the site. A forthcoming paper will be devoted to the site characterization. The instrument was built as part of the Ground Layer Turbulence Monitoring Campaign on Mauna Kea for Gemini Observatory.  相似文献   
168.
赵丁凤  梁珂  陈国兴  熊浩  周正龙 《岩土力学》2019,40(5):1832-1840
以南京细砂为对象,通过共振柱试验及应变控制的排水/不排水分级和单级加载循环三轴试验的系统性研究,建立了能够描述饱和砂土孔压增长规律的新模型。该模型遵循Martin和Byrne提出的基本理论框架,孔压的增长是由循环剪切作用下体积改变所引起的。提出的孔压模型属于应变控制的孔压增量模型。基于排水循环单级加载试验,通过引入体积门槛剪应变γ_(tv)的概念,以具有代表性的15周体应变(ξ_(vd))15为基准点,归准化体应变发展与循环剪应变之间的关系,建立了三参数的体应变增量模型及其参数标定方法。基于排水和不排水循环单级加载试验结果,揭示了体应变与孔压比之间的内在联系,进而导出回弹模量表达式。通过耦合新的体应变增量模型及回弹模量公式,建立了新的剪应变-体应变耦合的孔压增量模型。验证性试验表明,新的孔压增量模型的预测值与试验结果的吻合度较高。  相似文献   
169.
In fluvial sedimentology, bed sediment entrainment by streamflow has a decisive role in controlling several fluvial processes. Owing to its huge practical importance, the subject has been painstakingly explored for over a century. However, a detailed understanding of the mechanism of the bed sediment entrainment phenomenon achieved hitherto is far from complete. The central theme of bed sediment entrainment is occupied by the sediment entrainment threshold, which varies enormously in its qualitative definition, identification and quantification encompassing a broad range of spatiotemporal scales. This article presents the state of the science of the entrainment of non‐cohesive bed sediments under a steady‐unidirectional streamflow. It begins with the diverse definitions and representations of the entrainment threshold criterion from both qualitative and quantitative perspectives, scrutinising its suitability and ambit of applicability. Then, the effects of energetic factors that drive the entrainment threshold criterion are critically appraised. The indispensable mechanisms of bed sediment entrainment, including the theoretical background and modelling strategies, the role of turbulent bursting phenomenon and the phenomenological perspective into the origin of the scaling laws of sediment entrainment, are explained. Throughout the article, special emphasis is given to the strengths and weaknesses of the current state of the science. In addition, a deliberate attempt is made to invoke the thought‐provoking ideas on the multifarious features of bed sediment entrainment. Finally, the innovative perspectives on the bed sediment entrainment are provided and the concluding remarks are made, elucidating the major challenges and suggesting the prospective ways to resolve them as a future scope of research.  相似文献   
170.
Forest ecohydrological feedbacks complicate the threshold behaviour of stormflow response to precipitation or wetting conditions on a long-term scale (e.g. several years). In this study, the threshold behaviours in an evergreen-deciduous mixed forested headwater catchment in southern China were examined during 2009–2015, when damaged vegetation was recovering after the great 2008 Chinese ice and snowstorm. The non-uniqueness of the thresholds and the slow and rapid responses of stormflow at the outlet of the catchment in different hydro-climate datasets with different maximum values of gross precipitation (P) and sums of precipitation and antecedent soil moisture index (P + ASI) were assessed. The thresholds of P and P + ASI required to trigger stormflows (i.e. ‘generation thresholds’) and the transition from slow to rapid responses of stormflow (i.e. ‘rise thresholds’) were compared both seasonally and annually. The results indicated significant differences in the analysed datasets, highlighting the need to compare thresholds with care to avoid misinterpretation. Seasonal variations in threshold behaviours in the catchment suggested that vegetation canopy interception contributed to higher rise thresholds, and wetter conditions resulted in higher runoff sensitivity to precipitation during the growing and rainy seasons. Furthermore, the generation thresholds were higher in the dormant season, possibly due to drier soil moisture conditions in the near-channel areas. During the vegetation recovery period, the annual generation thresholds increased, however the rise thresholds did not exhibit a similar trend. The rapid stormflow response above the threshold decreased, possibly due to transpiration and interception of the recovered vegetation. However, the slow stormflow response to small rainfall events below the thresholds was higher in wetter years but lower in drier years, suggesting that the total water input dominated the stormflow response during small rainfall events. In conclusion, the seasonal and annual variations in threshold behaviours highlight that vegetation recovery and hydro-climatic conditions had a notable impact on the stormflow response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号