首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2990篇
  免费   665篇
  国内免费   676篇
测绘学   226篇
大气科学   782篇
地球物理   1130篇
地质学   889篇
海洋学   682篇
天文学   122篇
综合类   207篇
自然地理   293篇
  2024年   16篇
  2023年   41篇
  2022年   67篇
  2021年   83篇
  2020年   91篇
  2019年   112篇
  2018年   84篇
  2017年   118篇
  2016年   120篇
  2015年   119篇
  2014年   156篇
  2013年   211篇
  2012年   186篇
  2011年   174篇
  2010年   181篇
  2009年   186篇
  2008年   202篇
  2007年   271篇
  2006年   219篇
  2005年   177篇
  2004年   157篇
  2003年   135篇
  2002年   147篇
  2001年   115篇
  2000年   100篇
  1999年   121篇
  1998年   105篇
  1997年   94篇
  1996年   97篇
  1995年   67篇
  1994年   85篇
  1993年   56篇
  1992年   60篇
  1991年   45篇
  1990年   23篇
  1989年   29篇
  1988年   20篇
  1987年   17篇
  1986年   7篇
  1985年   3篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1954年   1篇
排序方式: 共有4331条查询结果,搜索用时 31 毫秒
131.
Based on 1961-2000 NCEP/NCAR monthly mean reanalysis datasets, vapor transfer and hydrological budget over the Tibetan Plateau are investigated. The Plateau is a vapor sink all the year round. In summer, vapor is convergent in lower levels (from surface to 500 hPa) and divergent in upper levels (from 400 to 300 hPa), with 450 hPa referred to as level of non-divergence. Two levels have different hydrologic budget signatures: the budget is negative at the upper levels from February to November, i.e., vapor transfers from the upper levels over the plateau; as to the lower, the negative (positive) budget occurs during the winter (summer) half year. Evidence also indicates that Tibetan Plateau is a "vapor transition belt", vapor from the south and the west is transferred from lower to upper levels there in summer, which will affect surrounding regions, including eastern China, especially, the middle and lower reaches of the Yangtze. Vapor transfer exerts significant influence on precipitation in summertime months. Vapor transferred from the upper layers helps humidify eastern China, with coefficient -0.3 of the upper budget to the precipitation over the middle and lower reaches of the Yangtze (MLRY); also, vapor transferred from east side (27.5o-32.5oN) of the upper level has remarkable relationship with precipitation, the coefficient being 0.41. The convergence of the lower level vapor has great effects on the local precipitation over the plateau, with coefficient reaching 0.44, and the vapor passage affects the advance and retreat of the rainbelt. In general, atmospheric hydrologic budget and vapor transfer over the plateau have noticeable effects on precipitation of the target region as well as the ambient areas.  相似文献   
132.
133.
Based on one type of practical Biot's equation and the dynamic-stiffness matrices of a poroelastic soil layer and half-space, Green's functions were derived for uniformly distributed loads acting on an inclined line in a poroelastic layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.  相似文献   
134.
Introduction The acceleration response spectrum and peak ground acceleration are the necessary and im-portant parameters in earthquake-resistant design at present. They are still active research field. With the increase of digital high accurate strong motion observation data, especially the earth-quakes of Loma Prieta (M=7.0) in 1989; Landers (M=7.3) in 1992; Big Bear (M=6.4) in 1994 and Northridge (M=6.7) in 1994 in USA; Kozani (M=6.6) earthquake and afteshocks in 1995 in Greece; Dinar…  相似文献   
135.
136.
Rainfall is the main source of groundwater recharge in the Gaza Strip area in Palestine. The area is located in the semi-arid zone and there is no source of recharge other than rainfall. Estimation of groundwater recharge from rainfall is not an easy task since it depends on many uncertain parameters. The cumulative rainfall departure (CRD) method, which depends on the water balance principle, was used in this study to estimate the net groundwater recharge from rainfall. This method does not require much data as is the case with other classical recharge estimation methods. The CRD method was carried out using optimisation approach to minimise the root mean square error (RMSE) between the measured and the simulated groundwater head. The results of this method were compared with the results of other recharge estimation methods from literature. It was found that the results of the CRD method are very close to the results of the other methods, but with less data requirements and greater ease of application. Based on the CRD method, the annual amount of groundwater recharge from rainfall in the Gaza Strip is about 43 million m3. An erratum to this article can be found at  相似文献   
137.
This paper presents an alternative Boussinesq equation considering hysteresis effect via a third‐order derivative term. By introducing an improved moisture–pressure retention function, this equation describes, with reasonable precision, groundwater propagation in coastal aquifers subject to Dirichlet boundary condition of different oscillation frequencies. Test results confirmed that it is necessary to consider horizontal and vertical flows in unsaturated zone, because of their variable influences on hysteresis. Hysteresis in unsaturated zone can affect the water table wave number of groundwater wave motion, such as wave damping rate and phase lag. Oscillations with different periods exert different hysteresis effect on wave propagation. Truncation/shrinkage of unsaturated zones also affects the strength of hysteresis. These impacts can be reflected in the alternative Boussinesq equation by adjusting the parameter representing the variation rate of moisture associated with pressure change, as opposed to traditional computationally expensive hysteresis algorithms. The present Boussinesq equation is simple to use and can provide feasible basis for future coupling of groundwater and surface water models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
138.
The hydrologic response of engineered media plays an important role in determining a stormwater control measure's ability to reduce runoff volume, flow rate, timing, and pollutant loads. Five engineered media, typical of living roof and bioretention stormwater control measures, were investigated in laboratory column experiments for their hydrologic responses to steady, large inflow rates. The inflow, medium water content response, and outflow were all measured. The water flow mechanism (uniform flow vs. preferential flow) was investigated by analyzing medium water content response in terms of timing, magnitude, and sequence with depth. Modeling the hydrologic process was conducted in the HYDRUS‐1D software, applying the Richards equation for uniform flow modeling, and a mobile–immobile model for preferential flow modeling. Uniform flow existed in most cases, including all initially dry living roof media with bimodal pore size distributions and one bioretention medium with unimodal pore size distribution. The Richards equation can predict the outflow hydrograph reasonably well for uniform flow conditions when medium hydraulic properties are adequately represented by appropriate functions. Preferential flow was found in two media with bimodal pore size distributions. The occurrence of preferential flow is more likely due to the interaction between the bimodal pore structure and the initial water content rather than the large inflow rate.  相似文献   
139.
River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using data‐demanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low‐land natural rivers, lake outlets, snow‐fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross‐validation conducted over a 30‐year period indicates that they can be suitably adopted for long‐term analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
140.
An approach is developed to simulate wave–wave interactions using nonlinear elliptic mild-slope equation in domains where wave reflection, refraction, diffraction and breaking effects must also be considered. This involves the construction of an efficient solution procedure including effective boundary treatment, modification of the nonlinear equation to resolve convergence issues, and validation of the overall approach. For solving the second-order boundary-value problem, the Alternating Direction Implicit (ADI) scheme is employed, and the use of approximate boundary conditions is supplemented, for improved accuracy, with internal wave generation method and dissipative sponge layers. The performance of the nonlinear model is investigated for a range of practical wave conditions involving reflection, diffraction and shoaling in the presence of nonlinear wave–wave interactions. In addition, the transformation of a wave spectrum due to nonlinear shoaling and breaking, and nonlinear resonance inside a rectangular harbor are simulated. Numerical calculations are compared with the results from other relevant nonlinear models and experimental data available in literature. Results show that the approach developed here performs reasonably well, and has thus improved the applicability of this class of wave transformation models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号