首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2213篇
  免费   513篇
  国内免费   801篇
测绘学   72篇
大气科学   1133篇
地球物理   959篇
地质学   523篇
海洋学   361篇
天文学   20篇
综合类   117篇
自然地理   342篇
  2024年   18篇
  2023年   44篇
  2022年   86篇
  2021年   123篇
  2020年   133篇
  2019年   135篇
  2018年   125篇
  2017年   110篇
  2016年   118篇
  2015年   144篇
  2014年   162篇
  2013年   166篇
  2012年   171篇
  2011年   178篇
  2010年   130篇
  2009年   181篇
  2008年   130篇
  2007年   159篇
  2006年   145篇
  2005年   112篇
  2004年   97篇
  2003年   82篇
  2002年   79篇
  2001年   61篇
  2000年   81篇
  1999年   45篇
  1998年   72篇
  1997年   82篇
  1996年   78篇
  1995年   66篇
  1994年   69篇
  1993年   40篇
  1992年   32篇
  1991年   20篇
  1990年   18篇
  1989年   13篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有3527条查询结果,搜索用时 234 毫秒
91.
The dynamics of vegetation‐driven spatial heterogeneity (VDSH) and its function in structuring runoff and sediment fluxes have received increased attention from both geomorphological and ecological perspectives, particularly in arid regions with sparse vegetation cover. This paper reviews the recent findings in this area obtained from field evidence and numerical simulation experiments, and outlines their implications for soil erosion assessment. VDSH is often observed at two scales, individual plant clumps and stands of clumps. At the patch scale, the local outcomes of vegetated patches on soil erodibility and hydraulic soil properties are well established. They involve greater water storage capacity as well as increased organic carbon and nutrient inputs. These effects operate together with an enhanced capacity for the interception of water and windborne resources, and an increased biological activity that accelerates breakdown of plant litter and nutrient turnover rates. This suite of relationships, which often involve positive feedback mechanisms, creates vegetated patches that are increasingly different from nearby bare ground areas. By this way a mosaic builds up with bare ground and vegetated patches coupled together, respectively, as sources and sinks of water, sediments and nutrients. At the stand scale within‐storm temporal variability of rainfall intensity controls reinfiltration of overland flow and its decay with slope length. At moderate rainfall intensity, this factor interacts with the spatial structure of VDSH and the mechanism of overland flow generation. Reinfiltration is greater in small‐grained VDSH and topsoil saturation excess overland flow. Available information shows that VDSH structures of sources and sinks of water and sediments evolve dynamically with hillslope fluxes and tune their spatial configurations to them. Rainfall simulation experiments in large plots show that coarsening VDSH leads to significantly greater erosion rates even under heavy rainfall intensity because of the flow concentration and its velocity increase. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
92.
A procedure is proposed for the reconfiguration of the macroseismic planes relative to earthquakes that, being characterized by a reduced number of points of observed intensity due to a lack of information, or having the epicenter very close to the coastline, are characterized by an incomplete distribution of observed intensity levels. The design of a plurality of virtual areas, through which a distribution of intensity consistent with an anisotropic model of attenuation is depicted, allows a reliable determination of macroseismic parameters of the same seismic event.  相似文献   
93.
In the study of soil erosion, specifically on detachment of soil particles by raindrop impact, kinetic energy is a commonly suggested indicator of the raindrop's ability to detach soil particles from the soil mass. Since direct measurement of kinetic energy requires sophisticated and costly instruments, the alternative approach is to estimate it from rainfall intensity. The present study aims at establishing a relationship between rainfall intensity and kinetic energy for rainfalls in Central Cebu, Philippines as a preface of a wider regional investigation.

Drop size distributions of rainfalls were measured using the disdrometer RD-80. There are two forms of kinetic energy considered here. One is kinetic energy per unit area per unit time (KER, J m−2 h−1) and the other is kinetic energy per unit area per unit depth (KE, J m−2 mm−1). Relationships between kinetic energy per unit area per unit time (KER) and rainfall intensity (I) were obtained using linear and power relations. The exponential model and the logarithmic model were fitted to the KE–I data to obtain corresponding relationships between kinetic energy per unit area per unit depth of rainfall (KE) and rainfall intensity (I). The equation obtained from the exponential model produced smaller standard error of estimates than the logarithmic model.  相似文献   

94.
A modelling of the observed macroseismic intensity of historical and instrumental earthquakes in southern Spain is proposed, with the aim of determining the macroseismic parameters for seismic hazard evaluation in a region in which the characterization of intensity distribution of seismic events shows different levels of difficulty referable to the complex faults system of the area in study. The adopted procedure allows an analytical determination of epicenters and principal attenuation directions of earthquakes with a double level of verification with reference to the maximum shaking area and structural lineaments of the region, respectively. The analyses, carried out on a suitable number of events, highlight, therefore, some elements for a preliminary characterization of a seismic zonation on the basis of the consistency between seismic intensity distribution of earthquakes and corresponding structural framework.  相似文献   
95.
Scalar and vector intensity measures are developed for the efficient estimation of limit‐state capacities through incremental dynamic analysis (IDA) by exploiting the elastic spectral shape of individual records. IDA is a powerful analysis method that involves subjecting a structural model to several ground motion records, each scaled to multiple levels of intensity (measured by the intensity measure or IM), thus producing curves of structural response parameterized by the IM on top of which limit‐states can be defined and corresponding capacities can be calculated. When traditional IMs are used, such as the peak ground acceleration or the first‐mode spectral acceleration, the IM‐values of the capacities can display large record‐to‐record variability, forcing the use of many records to achieve reliable results. By using single optimal spectral values as well as vectors and scalar combinations of them on three multistorey buildings significant dispersion reductions are realized. Furthermore, IDA is extended to vector IMs, resulting in intricate fractile IDA surfaces. The results reveal the most influential spectral regions/periods for each limit‐state and building, illustrating the evolution of such periods as the seismic intensity and the structural response increase towards global collapse. The ordinates of the elastic spectrum and the spectral shape of each individual record are found to significantly influence the seismic performance and they are shown to provide promising candidates for highly efficient IMs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
96.
杨扬  岳智慧郑文 《水文》2005,25(5):40-42
2004年“云娜”台风的监视和预报工作中,在应用常规天气资料的基础上加强了对历史热带气旋资料、天气雷达资料和过去对台风与台风暴雨分析预报研究成果的运用。在台风登陆前、登陆过程中和登陆后三个不同阶段中,应用多种资料进行有针对性的分析判断,并向防台风指挥部门及时提供信息服务,在防台工作中发挥了有效作用。,  相似文献   
97.
论述了华蓥山隧道的岩溶发育特征,根据岩溶发育强度的划分依据和划分标准,结合岩溶发育的历史,采用类比判别法、主因素判别法和综合判别法对岩溶发育强度作了垂直分带,据此预测的溶洞规模与实际情况吻合。  相似文献   
98.
This paper presents a single‐domain boundary element method (BEM) for linear elastic fracture mechanics analysis in the two‐dimensional anisotropic material. In this formulation, the displacement integral equation is collocated on the un‐cracked boundary only, and the traction integral equation is collocated on one side of the crack surface only. A special crack‐tip element was introduced to capture exactly the crack‐tip behavior. A computer program with the FORTRAN language has been developed to effectively calculate the stress intensity factors of an anisotropic material. This BEM program has been verified having a good accuracy with the previous researches. Furthermore, by analyzing the different anisotropic degree cracks in a finite plate, we found that the stress intensity factors of crack tips had apparent influence by the geometry forms of cracks and media with different anisotropic degrees. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
99.
The soil conservation service (now Natural Resources Conservation Service) Curve Number (SCS-CN), one of the most commonly used methods for surface runoff prediction. The runoff calculated by this method was very sensitive to CN values. In this study, CN values were calculated by both arithmetic mean (CN_C) and least square fit method (CN_F) using observed rainfall-runoff data from 43 sites in the Loess Plateau region, which are considerably different from the CN2 values obtained from the USDA-SCS handbook table (CN_T). The results showed that using CN_C instead of CN_T for each watershed produce little improvement, while replacing CN_T with CN_F improves the performance of the original SCS-CN method, but still performs poorly in most study sites. This is mainly due to the SCS-CN method using a constant CN value and discounting of the temporal variation in rainfall-runoff process. Therefore, three factors—soil moisture, rainfall depth and intensity—affecting the surface runoff variability are considered to reflect the variation of CN in each watershed, and a new CN value was developed. The reliability of the proposed method was tested with data from 38 watersheds, and then applied to the remaining five typical watersheds using the optimized parameters. The results indicated that the proposed method, which boosted the model efficiencies to 81.83% and 74.23% during calibration and validation cases, respectively, performed better than the original SCS-CN and the Shi and Wang (2020b) method, a modified SCS-CN method based on tabulated CN value. Thus, the proposed method incorporating the influence of the temporal variability of soil moisture, rainfall depth, and intensity factors suggests an accurate runoff prediction for general applications under different hydrological and climatic conditions on the Loess Plateau region.  相似文献   
100.
The effects of surface flux parameterizations on tropical cyclone(TC) intensity and structure are investigated using the Advanced Research Weather Research and Forecasting(WRF-ARW) modeling system with high-resolution simulations of Typhoon Morakot(2009).Numerical experiments are designed to simulate Typhoon Morakot(2009) with different formulations of surface exchange coefficients for enthalpy(C_K) and momentum(C_D) transfers,including those from recent observational studies based on in situ aircraft data collected in Atlantic hurricanes.The results show that the simulated intensity and structure are sensitive to C_K and C_D,but the simulated track is not.Consistent with previous studies,the simulated storm intensity is found to be more sensitive to the ratio of C_K/C_D than to C_K or C_D alone.The pressure-wind relationship is also found to be influenced by the exchange coefficients,consistent with recent numerical studies.This paper emphasizes the importance of C_D and C_K on TC structure simulations.The results suggest that C_D and C_K have a large impact on surface wind and flux distributions,boundary layer heights,the warm core,and precipitation.Compared to available observations,the experiment with observed C_D and C_K generally simulated better intensity and structure than the other experiments,especially over the ocean.The reasons for the structural differences among the experiments with different C_D and C_K setups are discussed in the context of TC dynamics and thermodynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号