首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1735篇
  免费   407篇
  国内免费   679篇
测绘学   51篇
大气科学   1167篇
地球物理   437篇
地质学   338篇
海洋学   495篇
天文学   18篇
综合类   51篇
自然地理   264篇
  2024年   5篇
  2023年   19篇
  2022年   47篇
  2021年   61篇
  2020年   104篇
  2019年   98篇
  2018年   61篇
  2017年   80篇
  2016年   73篇
  2015年   92篇
  2014年   118篇
  2013年   142篇
  2012年   103篇
  2011年   136篇
  2010年   108篇
  2009年   135篇
  2008年   101篇
  2007年   161篇
  2006年   154篇
  2005年   136篇
  2004年   115篇
  2003年   94篇
  2002年   100篇
  2001年   74篇
  2000年   74篇
  1999年   56篇
  1998年   69篇
  1997年   50篇
  1996年   43篇
  1995年   45篇
  1994年   46篇
  1993年   34篇
  1992年   16篇
  1991年   13篇
  1990年   8篇
  1989年   6篇
  1988年   9篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   10篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1977年   4篇
排序方式: 共有2821条查询结果,搜索用时 15 毫秒
231.
《Atmósfera》2014,27(4):353-365
This study attempts to understand why the frequency of tropical cyclones (TC) over the western North Pacific (WNP) was a record low during the 2010 season, by analyzing the effect of several large-scale factors. The genesis potential index (GPI) can represent, to some extent, the spatial distribution of formation in 2010. However, the GPI does not explain the extremely low TC frequency. No robust relationship between the TC number and El Niño Southern Oscillation (ENSO) was found. A comparison of the extreme inactive TC year 2010 and extreme active year 1994 was performed, based on the box difference index that can measure the quantitative difference of large-scale environmental factors. Dynamic factors were found to be important in differentiating TC formation over the WNP basin between 2010 and 1994. The remarkable difference of monsoon flows in the WNP basin between these two years may be the cause of the difference in TC formation. The unfavorable conditions for TC genesis in 2010 may have also been due to other large scale factors such as: (1) weak activity of the Madden-Julian Oscillation during the peak season; (2) warming of the sea surface temperature in the tropical Indian Ocean during the peak season, causing the development of an anticyclone over the WNP basin and associated with the westward motion of the monsoon trough, and (3) the phase change of the Pacific Decadal Oscillation (more negative) and the two strong La Niña events that have evolved since 2006.  相似文献   
232.
Mass concentrations of Total Suspended Particles (TSP) and size-segregated particles were obtained from July 2001 to June 2002 in Qingdao to characterize the seasonal variations of atmospheric aerosols and to show the impact of dust events on the air quality in Qingdao. Data on size-segregated aerosols show that 73.74% of the TSP mass concentration is contributed by particles with diameters less than 11 μm. Particles with diameters less than 1.1μm have a higher concentration during the winter. In spring, larger particles tend to have higher mass concentrations. Bimodal particle size distributions have been observed, with maxima around 4.7-7 μand 0.43-0.65 μm in the winter season, and 7-11 μm and 0.65-1.1 μm in the autumn season. Measurements made during the dust events in March 2002 show high concentrations of particles in the size range 2.1-7μm.  相似文献   
233.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
234.
Changes in water quality during a storm event were continuously monitored over a 24 h period at a single location along an urban stormwater drain in Butte, Montana. The Butte Metro Storm Drain (MSD) collects groundwater baseflow and stormwater draining Butte Hill, a densely populated site that has been severely impacted by 130 years of mining, milling, and smelting of copper‐rich, polymetallic mineral deposits. On the afternoon of 26 June 2002, a heavy thunderstorm caused streamflow in the MSD to increase 100‐fold, from 0·2 ft3 s−1 to more than 20 ft3 s−1. Hourly discharge and water quality data were collected before, during, and following the storm. The most significant finding was that the calculated loads (grams per hour) of both dissolved and particulate copper passing down the MSD increased more than 100‐fold in the first hour following the storm, and remained elevated over baseline conditions for the remainder of the study period. Other metals, such as zinc, cadmium, and manganese, showed a decrease in load from pre‐storm to post‐storm conditions. In addition to the large flush of copper, loads of soluble phosphorus increased during the storm, whereas dissolved oxygen dropped to low levels (<2 mg l−1). These results show that infrequent storm events in Butte have the potential to generate large volumes of runoff that exceed Montana water quality standards for acute exposure of aquatic life to copper, as well as depressed levels of dissolved oxygen. This study has important implications to ongoing reclamation activities in the upper Clark Fork Superfund site, particularly with respect to management of storm flow, and may be applicable to other watersheds impacted by mining activities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
235.
The problem of solar wind-magnetosphere coupling is investigated for intense geomagnetic storms (Dst < -100nT) that occurred during solar cycle 23. For this purpose interplanetary plasma and field data during some intensely geo-effective transient solar/interplanetary disturbances have been analysed. A geomagnetic index that represents the intensity of planetary magnetic activity at subauroral latitude and the other that measures the ring current magnetic field, together with solar plasma and field parameters (V, B, Bz, σB, N, and T) and their various derivatives (BV,-BVz, BV2, -BzV2, B2V, Bz2V, NV2) have been analysed in an attempt to study mechanism and the cause of geo-effectiveness of interplanetary manifestations of transient solar events. Several functions of solar wind plasma and field parameters are tested for their ability to predict the magnitude of geomagnetic storm.  相似文献   
236.
Understanding the intensity and duration of tropical rain events is critical to modelling the rate and timing of wet‐canopy evaporation, the suppression of transpiration, the generation of infiltration‐excess overland flow and hence to erosion, and to river responsiveness. Despite this central role, few studies have addressed the characteristics of equatorial rainstorms. This study analyses rainfall data for a 5 km2 region largely comprising of the 4 km2 Sapat Kalisun Experimental Catchment in the interior of northeastern Borneo at sampling frequencies from 1 min?1 to 1 day?1. The work clearly shows that most rainfall within this inland, forested area is received during regular short‐duration events (<15 min) that have a relatively low intensity (i.e. less than two 0·2 mm rain‐gauge tips in almost all 5 min periods). The rainfall appears localized, with significant losses in intergauge correlations being observable in minutes in the case of the typical mid‐afternoon, convective events. This suggests that a dense rain‐gauge network, sampled at a high temporal frequency, is required for accurate distributed rainfall‐runoff modelling of such small catchments. Observed rain‐event intensity is much less than the measured infiltration capacities, and thus supports the tenet of the dominance of quick subsurface responses in controlling river behaviour in this small equatorial catchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
237.
V. P. Singh 《水文研究》2002,16(7):1479-1511
Using kinematic wave equations, analytical solutions are derived for flow due to a storm moving up or down an infiltrating plane and covering it completely. The storm duration is assumed in two ways. First, the plane is covered everywhere for the same duration by the storm. Second, the plane is covered in a linearly decreasing manner from the beginning of its coverage of the plane to the other end of the plane. By comparing the flow due to this storm with that due to a stationary storm of the same duration, the influence of storm duration, direction and velocity on flow hydrograph is investigated. It is found that storm movement has a pronounced effect on runoff hydrograph. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
238.
Streamwatcr chemistry was monitored for five years in six streams in a paired catchment experiment in Mendolong, Sabah, Malaysia, including controls in rain forest and secondary vegetation after the [Borneo fire] of 1982–3 and comparing the effects of different ways of establishing forest plantations with Acacia mangium. Three catchments were covered with selectively logged lowland hill dipterocarp forest (W4-W6) and three (W1-W3) with secondary vegetation after forest fires. The control catchments, W3 and W6 reported in this paper, had no treatments applied. Reference monitoring at all streams was for 25 months and the total period of study reported here is 64 months. The soils in the catchments were mainly Orthic Acrisol in W3 and Gleyic Podsol in W6 and a mix of both soil types in the other catchments. Element baseflow concentrations were generally low and not significantly different from stormflow concentrations for all streams during the reference period. Concentrations were also generally consistently low for the two control streams during the whole period of measurement. Chemical inputs as wet deposition were low as a result of a high input from local convection. The rain forest on the Podsol had a tight nutrient circulation indicated by small net losses of macronutrients. The Podsol was found to have poorer conditions for soil mineralization and more surficial runoff, resulting in higher loads of S, C and N in the organic phases, with higher organic C/N ratio, in the discharge. Nitrogen was found to accumulate in both catchments. An almost double accumulation of N in W3 was attributed to a larger biomass accumulation continuing after the forest fire 3–8 years earlier. On the other hand, the Acrisol in W3 had much larger net losses of S, Si, K, Ca, Mg and Na. Most of differences could be attributed to differences in weathering between the soils and local mineralogical differences.  相似文献   
239.
时伟  蒋汉朝 《古地理学报》2022,24(3):599-610
为探讨构造稳定地区(如黄土高原)和构造活跃地区(如青藏高原东缘)粉尘沉积物中磁化率(SUS)与粒度的相关性及其对环境事件的指示意义,本次研究分析了黄土高原蓝田剖面黄土—古土壤样品和青藏高原东缘湖相沉积样品的粒度和磁化率记录。黄土高原黄土—古土壤沉积SUS与2~10 μm粒度组分最强正相关,青藏高原东缘湖相沉积的SUS与2~10 μm粒度组分最强负相关,反映2~10 μm粒度组分为黄土高原和青藏高原乃至亚洲干旱—半干旱地区连续稳定敏感的背景沉积组分。黄土高原黄土—古土壤沉积的SUS与32~63 μm粒度组分最强负相关,青藏高原东缘湖相沉积的SUS与32~63 μm粒度组分最强正相关,反映32~63 μm粒度组分不仅是黄土高原尘暴事件沉积的敏感指标,也是青藏高原东缘湖相沉积记录的地震事件敏感指标。SUS与粒度组分的相关性在青藏高原东缘地区地震事件层开始部分高于结束部分,也较好地反映地震事件为研究区添加新鲜沉积物后随地形地貌恢复逐步减少的过程。SUS与粒度组分相关性也受当地物源的影响。  相似文献   
240.
谭志远 《地质与勘探》2022,58(4):875-886
通过野外实测剖面和镜下薄片观察,于通过野外实测剖面和镜下薄片观察,在川南柏香田剖面早志留世石牛栏组下部发现一套风暴沉积,具有侵蚀底面、砾屑层、粒序层理、丘-洼状交错层理、沙纹层理以及风暴与平静天气形成的沉积物互层等风暴沉积特征。理想风暴沉积序列由6个沉积单元组成,根据剖面不同沉积单元间的排列组合,将其划分为4种风暴沉积序列,各序列间存在一定继承性,由下向上表现为远源型风暴向近源型风暴的转变、风暴强度逐渐增强的过程。结合更靠扬子东南缘的深水剖面重力流沉积的缺乏,可以推断早志留世石牛栏期研究区的沉积模式为碳酸盐缓坡。结合风暴的形成机制以及石牛栏组风暴沉积的发育特征可知(尤其是正粒序层理和典型丘状交错层理):研究区早志留世处于中低纬度的古地理位置,可为上扬子区古气候及古扬子海盆演化提供依据;上扬子区早志留世同期异相地层存有争议,风暴沉积特征为石牛栏组、小河坝组、罗惹坪组等地层提供等时性对比标尺;川南早志留世石牛栏组沉积环境意见不一,风暴沉积为其碳酸盐岩缓坡环境提供证据资料。通过总结前人对风暴岩物性认识,结合上扬子区同期地层油气地质条件,可提供油气勘探新途径。川南柏香田剖面早志留世石牛栏组下部发现一套风暴沉积,发育侵蚀底面、砾屑层、粒序层理、丘-洼状交错层理、沙纹层理以及风暴与平静天气形成的沉积物互层等风暴沉积特征。理想风暴沉积序列由6个沉积单元组成,根据剖面不同沉积单元间的排列组合,将其划分为4种风暴沉积序列,各序列间存在一定继承性,由下向上表现为远源型风暴向近源型风暴的转变、风暴强度逐渐增强的过程。结合更靠扬子东南缘的深水剖面中重力流沉积的缺乏,可以推断早志留世石牛栏期研究区的沉积模式为碳酸盐缓坡。结合风暴的形成机制以及石牛栏组风暴沉积的发育特征可知(尤其是正粒序层理和典型丘状交错层理):研究区早志留世存于中低纬度的古地理位置,可为上扬子区古气候及古扬子海盆演化提供依据;上扬子区早志留世同期异相地层存有争议,风暴沉积特征为石牛栏组、小河坝组、罗惹坪组等地层提供等时性对比标尺;川南早志留世石牛栏组沉积环境意见不一,风暴沉积为其碳酸盐岩缓坡环境提供证据资料;总结前人对风暴岩物性认识,结合上扬子区同期地层油气地质条件,提供油气勘探新途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号