首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   42篇
  国内免费   93篇
测绘学   30篇
大气科学   50篇
地球物理   71篇
地质学   114篇
海洋学   151篇
天文学   11篇
综合类   11篇
自然地理   13篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   13篇
  2020年   17篇
  2019年   18篇
  2018年   15篇
  2017年   15篇
  2016年   11篇
  2015年   23篇
  2014年   22篇
  2013年   31篇
  2012年   21篇
  2011年   15篇
  2010年   11篇
  2009年   18篇
  2008年   13篇
  2007年   16篇
  2006年   27篇
  2005年   32篇
  2004年   13篇
  2003年   19篇
  2002年   10篇
  2001年   10篇
  2000年   18篇
  1999年   20篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
  1954年   1篇
排序方式: 共有451条查询结果,搜索用时 125 毫秒
81.
提出了一种基于最小二乘潮位序列分段匹配方法。通过系统误差类型分析、分段段长确定、沉降发生具体时刻确定、系统误差类型探测和修复等算法研究,实现了临时潮位站潮位资料不同系统误差的准确探测和高精度修复。  相似文献   
82.
近40年来珠江口的海平面变化   总被引:6,自引:0,他引:6  
利用大万山附近1°×1°经纬度网格的卫星高度计资料(1993—2006),计算出珠江口绝对海平面的上升速率为0·30±0·05cm/a,与由卫星高度计得出的全球平均海平面的上升速率一致。珠江口各验潮站近40年的潮位变化趋势分析表明,珠江口海平面正加速上升,为全球气候变暖所致;珠江口海平面与全球温度变化和ENSO活动密切相关,一般在ENSO年海平面相对较低。以IPCC有关全球温度上升幅度的预报值和海平面与全球温度变化的关系为依据,预计到2030和2050年珠江口绝对海平面将分别上升6~14和9~21cm,若考虑地面沉降以及波动值,珠江口部分岸段相对海平面将可能分别上升30和50cm。  相似文献   
83.
The stream gauge rating curve for a drainage basin can be transformed into a drainage basin peak discharge rating curve that is more stable than the rating curve from which it is derived. The resulting drainage basin peak discharge rating curve can be used to predict peak discharge, identify anomalous discharges caused by channel obstructions or other causes, evaluate the effect of flood retarding structures, and evaluate historical records. The drainage basin peak discharge rating curve is valid for drainage basins of any size, for any discharge up to the time of concentration, and for snowmelt.  相似文献   
84.
The Tretyakov non-recording precipitation gauge has been used historically as the official precipitation measurement instrument in the Russian (formerly the USSR) climatic and hydrological station network and in a number of other European countries. From 1986 to 1993, the accuracy and performance of this gauge were evaluated during the WMO Solid Precipitation Measurement Intercomparison at 11 stations in Canada, the USA, Russia, Germany, Finland, Romania and Croatia. The double fence intercomparison reference (DFIR) was the reference standard used at all the Intercomparison stations in the Intercomparison. The Intercomparison data collected at the different sites are compatible with respect to the catch ratio (measured/DFIR) for the same gauge, when compared using mean wind speed at the height of the gauge orifice during the observation period. The Intercomparison data for the Tretyakov gauge were compiled from measurements made at these WMO intercomparison sites. These data represent a variety of climates, terrains and exposures. The effects of environmental factors, such as wind speed, wind direction, type of precipitation and temperature, on gauge catch ratios were investigated. Wind speed was found to be the most important factor determining the gauge catch and air temperature had a secondary effect when precipitation was classified into snow, mixed and rain. The results of the analysis of gauge catch ratio versus wind speed and temperature on a daily time step are presented for various types of precipitation. Independent checks of the correction equations against the DFIR have been conducted at those Intercomparison stations and a good agreement (difference less than 10%) has been obtained. The use of such adjustment procedures should significantly improve the accuracy and homogeneity of gauge-measured precipitation data over large regions of the former USSR and central Europe.  相似文献   
85.
The objective of this paper is to provide an overview of the present status and procedures related to surface precipitation observations at Environment and Climate Change Canada (ECCC). This work was done to support the ongoing renewal of observation systems and networks at the Meteorological Service of Canada. The paper focusses on selected parameters, namely, accumulated precipitation, precipitation intensity, precipitation type, rainfall, snowfall, and radar reflectivity. Application-specific user needs and requirements are defined and captured by World Meteorological Organization (WMO) Expert Teams at the international level by Observing Systems Capability Analysis and Review (OSCAR) and WMO Integrated Global Observing System (WIGOS), and by ECCC user engagement initiatives within the Canadian context. The precipitation-related networks of ECCC are separated into those containing automatic instruments, those with human (manual) observers, and the radar network. The unique characteristics and data flow for each of these networks, the instrument and installation characteristics, processing steps, and limitations from observation to data distribution and storage are provided. A summary of precipitation instrument-dependent algorithms that are used in ECCC's Data Management System is provided. One outcome of the analysis is the identification of gaps in spatial coverage and data quality that are required to meet user needs. Increased availability of data, including from long-serving manual sites, and an increase in the availability of precipitation type and snowfall amount are identified as improvements that would benefit many users. Other recognized improvements for in situ networks include standardized network procedures, instrument performance adjustments, and improved and sustained access to data and metadata from internal and external networks. Specific to radar, a number of items are recognized that can improve quantitative precipitation estimates. Increased coverage for the radar network and improved methods for assessing and portraying radar data quality would benefit precipitation users.  相似文献   
86.
This study presented a detailed comparison of daily precipitation estimates from Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) and Tropical Rainfall Measuring Mission (TRMM) Multi -satellite Precipitation Analysis (TMPA) over Hunan province of China from 1998 to 2014. The ground gauge observations are taken as the reference. It is found that overall TMPA clearly outperforms PERSIANN, indicating by better statistical metrics (including correlation coefficient, root mean square error and relative bias). For the geospatial pattern, although both products are able to capture the major precipitation features (e.g., precipitation geospatial homogeneity) in Hunan, yet PERSIANN largely underestimates the precipitation intensity throughout all seasons. In contrast, there is no clear bias tendency from TMPA estimates. Precipitation intensity analysis showed that both the occurrence and amount histograms from TMPA are closer to the gauge observations from spring to autumn. However, in the winter season PERSIANN is closer to gauge observation, which is likely due to the ground contamination from the passive microwave sensors used by TMPA.  相似文献   
87.
The ten-year progress of Chinese polar geodesy from 1996 to 2006 is summarized. Research on plate motion, crustal movement, orbit determination, and atmospheric monitoring, including the ionosphere and troposphere, were performed using GPS data of the Great Wall Station, Zhongshan Station and Yellow River Station. GPS was also applied in the Amery Ice Shelf, Grove Mountains and Dome A expeditions to study ice dynamics. During the 2004/2005 austral summer season, the absolute gravity and relative gravity were measured at the Great Wall Station with precision within ± 3 × 10−8 ms−2 and ± 10 × 10−8 ms−2 respectively. The tide gauge, which was set up in Zhongshan Station to monitor sea level change in 2000, recorded the 2004 Indian Ocean tsunami. SAR interferometry was applied to build the DEM of ice sheet and monitor ice flow in the polar region. __________ Translated from Advances in Earth Science, 2007, 22(8): 784–790 [译自: 地球科学进展]  相似文献   
88.
赵俊哲  吕新彪 《岩矿测试》2008,27(5):337-340
利用热液金刚石压腔研究了白云石在温度298 K、压力100~1 000 MPa下C-O键弯曲振动峰1ν097的拉曼变化特征。结果表明,在实验的压力范围内白云石稳定,其拉曼位移和压力具有很好的线性关系,拟合后得出压力与白云石1 097 cm-1拉曼线频率位移的关系为:p=143.47(Δpν)1 097+102.67(1 097相似文献   
89.
利用验潮站资料的中国近岸海潮模型精度评估   总被引:1,自引:0,他引:1  
针对全球海潮模型在我国近海海域精度较差的问题,该文采用中国沿岸30个长期验潮站的调和常数,对比了3种全球海潮模型DTU10、TPXO7.2、NAO.99b和1个区域海潮模型NAO.99Jb在中国沿岸的准确度。通过海潮模型与验潮站分潮的振幅中误差、迟角中误差以及8个主要分潮的预报误差,对渤海、黄海、东海和南海北部进行了详细的分析。结果表明,NAO.99Jb在中国海域精度最高,NAO.99b次之。在渤海海域,DTU10在Q_1分潮精度最高,NAO.99b在K2分潮精度最高,其余分潮均是NAO.99Jb精度最高;在黄海海域,NAO.99b在Q_1分潮精度最高,其余分潮均是NAO.99Jb精度最高;在东海海域,DTU10在Q_1分潮精度最高,TPXO7.2在P1精度最高,NAO.99Jb在O1、M2分潮精度最高,其余分潮均是NAO.99b精度最高;在南海北部海域,DTU10在N2、S2分潮精度最高,其余分潮均是NAO.99Jb精度最高。  相似文献   
90.
The present tidal correction of sea level records of Satellite with ARgoes and ALtimeter (SARAL) is based on the finite element solution (FES) of global tide model FES2012 tidal solution. In this study, we examined the validity of the tidal corrections in the coastal oceans around India using tide gauge measurements and a regional tidal model. Our regional model is based on the barotropic version of the Princeton Ocean Model that is forced by the time-varying tidal levels at the open ocean end based on the global FES99 tidal solution. Tide charts prepared from the simulated tidal levels are very similar to the FES tidal solutions. Comparison with the tide gauge measurement shows close agreement with the regional tidal solutions. On the other hand, the agreement with the FES tide models differ significantly in the Gulf of Khambhat and the Gulf of Kutch on the northwest, and in the Hooghly estuary on the northeast continental shelf. However, the agreement is exceptional in other parts of the study domain. These tidal solutions are used in the SARAL-ALTIKA X-track data to assess the FES tidal correction and to draw some inferences associated with the coastal processes. It is revealed that these corrections are reasonably accurate for the coastal oceans around India except the aforementioned converging channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号