首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2433篇
  免费   436篇
  国内免费   431篇
测绘学   145篇
大气科学   708篇
地球物理   807篇
地质学   691篇
海洋学   426篇
天文学   226篇
综合类   81篇
自然地理   216篇
  2024年   8篇
  2023年   19篇
  2022年   49篇
  2021年   64篇
  2020年   58篇
  2019年   68篇
  2018年   57篇
  2017年   84篇
  2016年   88篇
  2015年   96篇
  2014年   123篇
  2013年   136篇
  2012年   100篇
  2011年   198篇
  2010年   193篇
  2009年   214篇
  2008年   210篇
  2007年   148篇
  2006年   171篇
  2005年   127篇
  2004年   132篇
  2003年   95篇
  2002年   119篇
  2001年   94篇
  2000年   90篇
  1999年   86篇
  1998年   67篇
  1997年   70篇
  1996年   62篇
  1995年   31篇
  1994年   44篇
  1993年   46篇
  1992年   29篇
  1991年   20篇
  1990年   25篇
  1989年   20篇
  1988年   12篇
  1987年   8篇
  1986年   8篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   6篇
  1973年   1篇
  1954年   1篇
排序方式: 共有3300条查询结果,搜索用时 93 毫秒
81.
Liu Jie 《中国地震研究》2004,18(4):406-416
Study of seismic activity in the Kuqa area enables us to infer some possible active faults in basement from the epicentral distribution on different profiles. The relations between active faults in the basement and surface structures are analyzed and the difference between sedimentary cover and basement in their deformation characteristics and the genesis are discussed. The following conclusions have been drawn : ( 1 ) the epicentral distribution indicates that, the east Qiulitag and south and north Qiulitag deep faults in the basement correspond to the east and west Qiulitag anticlines, respectively. Moreover, deep faults also exist beneath the Yiqiklik and Yaken anticlines. It indicates that the formation of surface structures is controlled by deep structures; (2) A NE-trending strike-slip fault develops along the line from the western termination of Yiqiklik structure to Dongqiu Well 5 and a NW-trending active fault on the western side of Baicbeng. The two active faults across the tectonic strike are the main causes for tectonic segmentation of the Kuqa depression and possibly the cause for the middle segment (Kuqa-Baicheng) of the depression to be more shortened than both its eastern and western terminations; (3) The difference between the sedimentary cover and basement in their deformation characteristics depends mainly on the different properties of media between them.The lithospheric strength of the basement in the basin is fairly high, which determines the basement deformation to be mainly of brittle fracture seismic activity. While the strength of sedimentary cover is low, where there exist weak thin layers, such as coal and gyps. Under the effect of strong tectonic compression, the sedimentary rocks may undergo strong viscous or plastic flow deformation; meanwhile, an aseismic detachment may take place along the weak layers.  相似文献   
82.
地面风对瓦里关山大气CH4本底浓度的影响分析   总被引:6,自引:1,他引:6       下载免费PDF全文
使用1994年7月至1996年12月大气CH4和地面风现场连续观测资料,分析了瓦里关全球大气本底基准站(36°17′N, 100°54′E,海拔3816 m)地面风变化对大气CH4本底浓度的影响。结果表明,水平风向、风速和垂直风向、风速的变化对大气CH4观测值的影响在春、夏、秋、冬季有明显不同,水平风向NE—ENE—E为CH4测量最主要的局地影响非本底扇区,静风及水平风速大于10 m/s、垂直风速大于±1 m/s对观测结果都有较大影响;由的统计平均还给出了此段期间瓦里关大气CH4在不同季节的浓度分布范围和日变化类型,并分析了可能成因;将地面风数据作为大气CH4本底资料的过滤因子之一,提出了适用于不同使用目的和要求的我国内陆高原大气CH4本底数据筛选方法,本底数据留存率约为原始资料量的50%。  相似文献   
83.
中国春季沙尘天气频数的时空变化及其与地面风压场的关系   总被引:25,自引:4,他引:25  
王小玲  翟盘茂 《气象学报》2004,62(1):96-103
文中利用EOF和SVD方法分析了近半个世纪中国春季沙尘天气频数的时空分布特征及其与近地面风速和海平面气压的关系。中国北方大部分地区春季沙尘天气发生频数近半个世纪呈减少趋势 ,2 0世纪 70年代末以前沙尘天气发生频数较多 ,70年代末开始逐渐减少 ,1997年降到最低值 ,同期中国近地面风速也呈减小趋势 ,两者之间存在显著相关。春季海平面气压场与中国沙尘天气的发生频数有十分密切的联系 ,海平面气压在中高纬度地区降低 ,中低纬度地区升高 ,气压梯度发生改变 ,从而引起地面风速减小 ,进一步影响到沙尘天气发生频数减少  相似文献   
84.
夏季红枫湖地区农田土壤-大气界面汞交换通量的初步研究   总被引:11,自引:2,他引:11  
采用动力学通量箱法(Dynamic Flux Chamber)与高时间分辨率大气测汞仪联用技术对贵州红枫湖地区土壤-大气界面间汞交换通量进行了初步研究.结果显示,红枫湖地区土壤-大气界面间汞交换通量变化范围为-8.6 ng~215.3 ng@m-2@h-1,平均27.4士40.1 ng/m2@h(n=255);且土壤与大气界面间的汞交换是双向的既有土壤汞的释放,又有大气汞的沉降,主要以土壤汞的释放为主(n释放=253,n沉降=2n).土壤汞的释放通量与土壤温度、气温、光照强度有强相关关系,相关系数分别为0.80、0.83、0.74.  相似文献   
85.
The organic matter of the surface horizons of soils developed below scrub vegetation in a Mediterranean semi-arid area of great environmental interest (Cabo de Gata-Níjar Natural Park, SE Spain) has been studied. The study mainly concentrates on examining the influence of two vegetation types, one evolved (according to its successional stage), and the other clearly degraded as a result of prior removal of vegetation. In spite of the homogeneity in the results obtained from the analysis of the organic matter from the soils studied, a relationship may be established between vegetation biotype and characteristics and evolution of the soil organic matter. The evolved vegetation results in the presence in the soil of a somewhat more evolved and stable organic matter (demonstrated by certain chemical and microbiological aspects), resulting in a greater degree of humification, thus favouring the protection of the soil and the ecosystem as a whole. Hence, the presence of degraded vegetation might lead to soil degradation, something that is unsustainable in semi-arid areas that are particularly fragile in nature.  相似文献   
86.
We present a new three-dimensional SV-wave velocity model for the upper mantle beneath South America and the surrounding oceans, built from the waveform inversion of 5850 Rayleigh wave seismograms. The dense path coverage and the use of higher modes to supplement the fundamental mode of surface waves allow us to constrain seismic heterogeneities with horizontal wavelengths of a few hundred kilometres in the uppermost 400 km of the mantle.The large scale features of our tomographic model confirm previous results from global and regional tomographic studies (e.g. the depth extent of the high velocity cratonic roots down to about 200–250 km).Several new features are highlighted in our model. Down to 100 km depth, the high velocity lid beneath the Amazonian craton is separated in two parts associated with the Guyana and Guapore shields, suggesting that the rifting episode responsible for the formation of the Amazon basin has involved a significant part of the lithosphere. Along the Andean subduction belt, the structure of the high velocity anomaly associated with the sudbduction of the Nazca plate beneath the South American plate reflects the along-strike variation in dip of the subducting plate. Slow velocities are observed down to about 100 km and 150 km at the intersection of the Carnegie and Chile ridges with the continent and are likely to represent the thermal anomalies associated with the subducted ridges. These lowered velocities might correspond to zones of weakness in the subducted plate and may have led to the formation of “slab windows” developed through unzipping of the subducted ridges; these windows might accommodate a transfer of asthenospheric mantle from the Pacific to the Atlantic ocean. From 150 to 250 km depth, the subducting Nazca plate is associated with high seismic velocities between 5°S and 37°S. We find high seismic velocities beneath the Paraná basin down to about 200 km depth, underlain by a low velocity anomaly in the depth range 200–400 km located beneath the Ponta Grossa arc at the southern tip of the basin. This high velocity anomaly is located southward of a narrow S-wave low velocity structure observed between 200 and 500–600 km depth in body wave studies, but irresolvable with our long period datasets. Both anomalies point to a model in which several, possibly diachronous, plumes have risen to the surface to generate the Paraná large igneous province (LIP).  相似文献   
87.
Stream mesoscale habitats have systematic topographic relationships to hyporheic flow patterns, which may create predictable temperature variation between mesoscale habitat types. We investigated whether systematic differences in temperature metrics occurred between mesoscale habitats within reaches of small streams tributary to the upper Little Tennessee River, southern Appalachians. Surface water temperature was recorded over three or four mid‐summer days in four mesoscale habitat types: riffle, main riffle, pool and alcove in 44 stream segments (sites). Temperature metrics were calculated for each mesoscale habitat relative to the mean value of the metric over the stream: Δ maximum temperature, Δ average maximum temperature and Δ maximum daily variation and also for each site: standard deviation of the maximum temperature and average diurnal variation (ADV). Sites were categorized as fully or partially forested. Pool tailouts had statistically significantly lower Δ maximum temperature and Δ average maximum temperature than riffle tailouts in partially forested sites, although differences were small. This was the opposite of what was expected in the presence of hyporheic exchange, indicating hyporheic exchange is not a dominant driver of mesoscale habitat temperatures at these sites. Temperature differences between mesoscale habitat units were small and unlikely to have ecological significance. We also evaluated relationships between stream temperature and riparian condition, watershed % impervious surfaces, watershed % non‐forested and elevation. ADV and standard deviation of the maximum temperature were significantly higher in partially forested sites, indicating that partially forested sites have greater temperature ranges and spatial variation of maximum temperatures. ADV decreased with elevation and increased with % impervious surfaces. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
88.
Developing an appropriate data collection scheme to infer stream–subsurface interactions is not trivial due to the spatial and temporal variability of exchange flowpaths. Within the context of a case study, this paper presents the results from a number of common data collection techniques ranging from point to reach scales used in combination to better understand the spatial complexity of subsurface exchanges, infer the hydrologic conditions where individual influences of hyporheic and groundwater exchange components on stream water can be characterized, and determine where gaps in information arise. We start with a tracer‐based, longitudinal channel water balance to quantify hydrologic gains and losses at a sub‐reach scale nested within two consecutive reaches. Next, we look at groundwater and stream water surface levels, shallow streambed vertical head gradients, streambed and aquifer hydraulic conductivities, water chemistry, and vertical flux rates estimated from streambed temperatures to provide more spatially explicit information. As a result, a clearer spatial understanding of gains and losses was provided, but some limitations in interpreting results were identified even when combining information collected over various scales. Due to spatial variability of exchanges and areas of mixing, each technique frequently captured a combination of groundwater and hyporheic exchange components. Ultimately, this study provides information regarding technique selection, emphasizes that care must be taken when interpreting results, and identifies the need to apply or develop more advanced methods for understanding subsurface exchanges. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
89.
Stream–subsurface exchange plays a significant role in the fate and transport of contaminants in streams. It has been modelled explicitly by considering fundamental processes such as hydraulic exchange, colloid filtration, and contaminant interactions with streambed sediments and colloids. The models have been successfully applied to simulate the transport of inorganic metals and nutrients. In this study, laboratory experiments were conducted in a recirculating flume to investigate the exchange of a hydrophobic organic contaminant, p,p′‐dichloro‐diphenyl‐dichloroethane (DDE), between a stream and a quartz sand bed. A previously developed process‐based multiphase exchange model was modified by accounting for the p,p′‐DDE kinetic adsorption to and desorption from the bed sediments/colloids and was applied to interpret the experimental results. Model input parameters were obtained by conducting independent small‐scale batch experiments. Results indicate that the immobilization of p,p′‐DDE in the quartz sand bed can occur under representative natural stream conditions. The observed p,p′‐DDE exchange was successfully simulated by the process‐based model. The model sensitivity analysis results show that the exchange of p,p′‐DDE can be sensitive to either the sediment sorption/desorption parameters or colloidal parameters depending on the experimental conditions tested. For the experimental conditions employed here, the effect of colloids on contaminant transport is expected to be minimal, and the stream–subsurface exchange of p,p′‐DDE is dominated by the interaction of p,p′‐DDE with bed sediment. The work presented here contributes to a better mechanistic understanding of the complex transport process that hydrophobic organic contaminants undergo in natural streams and to the development of reliable, predictive models for the assessment of impacted streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
90.
Many studies have investigated the exchange processes that occur between rivers and groundwater systems and have successfully quantified the water fluxes involved. Specifically, these exchange processes include hyporheic exchange, river–aquifer exchange (groundwater discharge and river loss) and bank storage exchange. Remarkably, there are relatively few examples of field studies where more than one exchange process is quantified, and as a consequence, the relationships between them are not well understood. To compare the relative magnitudes of these common exchange processes, we have collected data from 54 studies that have quantified one or more of these exchange flux types. Each flux value is plotted against river discharge at the time of measurement to allow the different exchange flux types to be compared. We show that there are positive relationships between the magnitude of each exchange flux type and increasing river discharge across the different studies. For every one order of magnitude increase in river discharge, the hyporheic, river–aquifer and bank storage exchange fluxes increase by factors of 2.7, 2.9 and 2.5, respectively. On average, hyporheic exchange fluxes are almost an order of magnitude greater than river–aquifer exchange fluxes, which are, in turn, approximately four times greater than bank storage exchange fluxes for the same river discharge. Unless measurement approaches that can distinguish between different types of exchange flux are used, there is potential for hyporheic exchange fluxes to be misinterpreted as river–aquifer exchange fluxes, with possible implications for water resource management decisions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号