首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   643篇
  免费   71篇
  国内免费   182篇
测绘学   10篇
大气科学   206篇
地球物理   126篇
地质学   359篇
海洋学   102篇
天文学   12篇
综合类   27篇
自然地理   54篇
  2024年   4篇
  2023年   10篇
  2022年   19篇
  2021年   18篇
  2020年   12篇
  2019年   18篇
  2018年   16篇
  2017年   17篇
  2016年   28篇
  2015年   26篇
  2014年   35篇
  2013年   59篇
  2012年   30篇
  2011年   23篇
  2010年   32篇
  2009年   44篇
  2008年   64篇
  2007年   53篇
  2006年   50篇
  2005年   35篇
  2004年   33篇
  2003年   19篇
  2002年   20篇
  2001年   20篇
  2000年   33篇
  1999年   13篇
  1998年   23篇
  1997年   27篇
  1996年   10篇
  1995年   11篇
  1994年   15篇
  1993年   17篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   10篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有896条查询结果,搜索用时 31 毫秒
781.
河流碳通量与陆地侵蚀研究   总被引:29,自引:2,他引:29  
河流碳通量系陆地侵蚀产物,它构成全球碳循环的一个重要环节。河流碳通量在数量上远小于全球碳循环的其他环节,但由于与陆地生态系统联系密切,故对它的研究尤为重要。全球每年河流碳通量约为1GtC(109t碳),其中约60%为无机碳、40%为有机碳。溶解态有机碳和颗粒状有机碳主要来源于土壤侵蚀,另有一部分有机碳来源于河湖中的浮游植物;溶解态无机碳主要源于大气中CO2和碳酸盐;颗粒无机碳主要指未溶解的碳酸盐。亚洲季风区河流对全球河流碳通量具有较大贡献,而对其研究程度较低。河流碳通量研究既可为流域治理提供基础资料,也是进一步了解人为CO2“未知汇”的途径之一。  相似文献   
782.
Vertical distributions of dimethylsulfide (DMS), sulfur dioxide (SO2), aerosol methane-sulfonate (MSA), non-sea-salt sulfate (nss-SO4 2-), and other aerosol ions were measured in maritime air west of Tasmania (Australia) during December 1986. A few cloudwater and rainwater samples were also collected and analyzed for major anions and cations. DMS concentrations in the mixed layer (ML) were typically between 15–60 ppt (parts per trillion, 10–12; 24 ppt=1 nmol m–3 (20°C, 1013 hPa)) and decreased in the free troposphere (FT) to about <1–2.4 ppt at 3 km. One profile study showed elevated DMS concentrations at cloud level consistent with turbulent transport (cloud pumping) of air below convective cloud cells. In another case, a diel variation of DMS was observed in the ML. Our data suggest that meteorological rather than photochemical processes were responsible for this behavior. Based on model calculations we estimate a DMS lifetime in the ML of 0.9 days and a DMS sea-to-air flux of 2–3 mol m–2 d–1. These estimates pertain to early austral summer conditions and southern mid-ocean latitudes. Typical MSA concentrations were 11 ppt in the ML and 4.7–6.8 ppt in the FT. Sulfur-dioxide values were almost constant in the ML and the lower FT within a range of 4–22 ppt between individual flight days. A strong increase of the SO2 concentration in the middle FT (5.3 km) was observed. We estimate the residence time of SO2 in the ML to be about 1 day. Aqueous-phase oxidation in clouds is probably the major removal process for SO2. The corresponding removal rate is estimated to be a factor of 3 larger than the rate of homogeneous oxidation of SO2 by OH. Model calculations suggest that roughly two-thirds of DMS in the ML are converted to SO2 and one-third to MSA. On the other hand, MSA/nss-SO4 2- mole ratios were significantly higher compared to values previously reported for other ocean areas suggesting a relatively higher production of MSA from DMS oxidation over the Southern Ocean. Nss-SO4 2- profiles were mostly parallel to those of MSA, except when air was advected partially from continental areas (Africa, Australia). In contrast to SO2, nss-SO4 2- values decreased significantly in the middle FT. NH4 +/nss-SO4 2- mole ratios indicate that most non-sea-salt sulfate particles in the ML were neutralized by ammonium.  相似文献   
783.
In this study, the boric acid extraction from colemanite ore in aqueous media saturated by CO2 and SO2 gases was studied and the effects of relevant parameters, namely; reaction temperature, solid-to-liquid ratio, mean particle size, stirring speed and reaction time have been investigated on the boric acid extraction from colemanite ore by using the fractional factorial design and central composite design methods. The chosen experimental parameter levels were as follows: reaction temperature, 11.4–58.6 °C; solid-to-liquid ratio, 0.0685–0.1315 g/mL; mean particle size, 0.2835–3 mm; stirring speed, 107–893 rpm; reaction time, 7.125–22.875 min. A model has been developed between the boric acid extraction efficiency from colemanite ore and relevant parameters by means of variance analysis by using the matlab computer software and the obtained model was used to determine optimum conditions. The optimum conditions were found to be as follows: reaction temperature, 41 °C; solid-to-liquid ratio, 0.0685 g/mL; mean particle size, 0.2835 mm; stirring speed, 266 rpm; reaction time, 7 min. The calculated boric acid extraction efficiency from colemanite ore was approximately 99.9% under the optimum conditions.  相似文献   
784.
The final lavas of the Siberian flood basalts are a ∼1,000 m thick section of meimechites, high-alkali, high-titanium, hydrous lavas that contrast sharply with the tholeiites that precede them. This paper presents a phase equilibrium study indicating that a candidate primary meimechite magma with 1 wt% water originated at ∼5.5 GPa and 1,700°C, both hotter and shallower than other estimates for melting beneath continental lithosphere. The experiments also suggest that a higher volatile content was involved in meimechite source genesis. Both the absence of orthopyroxene in any experiment and the close field association with carbonatites suggest that the meimechite source region may have been metasomatized with a CO2-rich fluid. A small additional quantity of CO2 and water would move magma origination to ∼1,550–1,600°C.  相似文献   
785.
A theoretical model for gas adsorption-induced coal swelling   总被引:6,自引:2,他引:6  
Swelling and shrinkage (volumetric change) of coal during adsorption and desorption of gas is a well-known phenomenon. For coalbed methane recovery and carbon sequestration in deep, unminable coal beds, adsorption-induced coal volumetric change may cause significant reservoir permeability change. In this work, a theoretical model is derived to describe adsorption-induced coal swelling at adsorption and strain equilibrium. This model applies an energy balance approach, which assumes that the surface energy change caused by adsorption is equal to the elastic energy change of the coal solid. The elastic modulus of the coal, gas adsorption isotherm, and other measurable parameters, including coal density and porosity, are required in this model. Results from the model agree well with experimental observations of swelling. It is shown that the model is able to describe the differences in swelling behaviour with respect to gas species and at very high gas pressures, where the coal swelling ratio reaches a maximum then decreases. Furthermore, this model can be used to describe mixed-gas adsorption induced-coal swelling, and can thus be applied to CO2-enhanced coalbed methane recovery.  相似文献   
786.
787.
Fluid inclusions have recorded the history of degassing in basalt. Some fluid inclusions in olivine and pyroxene phenocrysts of basalt were analyzed by micro-thermometry and Raman spectroscopy in this paper. The experimental results showed that many inclusions are present almost in a pure CO2 system. The densities of some CO2 inclusions were computed in terms of Raman spectroscopic characteristics of CO2 Fermi resonance at room temperature. Their densities change over a wide range, but mainly between 0.044 g/cm3 and 0.289 g/cm3. Their micro-thermometric measurements showed that the CO2 inclusions examined reached homogenization between 1145.5℃ and 1265℃ . The mean value of homogenization temperatures of CO2 inclusions in basalts is near 1210℃. The trap pressures (depths) of inclusions were computed with the equation of state and computer program. Distribution of the trap depths makes it know that the degassing of magma can happen over a wide pressure (depth) range, but mainly at the depth of 0.48 km to 3.85 km. This implicates that basalt magma experienced intensive degassing and the CO2 gas reservoir from the basalt magma also may be formed in this range of depths. The results of this study showed that the depth of basalt magma degassing can be forecasted from CO2 fluid inclusions, and it is meaningful for understanding the process of magma degassing and constraining the inorganogenic CO2 gas reservoir.  相似文献   
788.
用氢氧化钠-过氧化钠混合熔剂分解样品,酸提取后加入亚硫酸钠水浴加热消除过氧化氢和大量钛的干扰,硅钼蓝分光光度法快速测定钛铁矿中二氧化硅的含量。经国家一级标准物质分析验证,结果与标准值相符,相对标准偏差(RSD,n=7)为0.34%~2.24%。  相似文献   
789.
Fluid inclusion studies in rocks from the Lower Proterozoic granulites from western Hoggar (Algeria) provide new evidence for the hypothesis that a CO2-rich, H2O-poor fluid was present during the high-grade metamorphism. CO2 inclusions represent the main fluid trapped in the Ihouhaouene ultrahigh-temperature (over 1000 °C) and high-pressure (10 to 14 kbar) granulites. The microthermometric and Raman microspectrometric measurements indicate that the carbonic fluid is mainly composed of CO2 with minor amounts of CH4 and N2 detected in some inclusions (< 4 mol% CH4). Carbonic fluid densities range from 1.18 to 0.57 g/cm3. The highest densities are recorded in superdense carbonic inclusions presenting evidence of the earliest trapping and they correspond to the fluid densities expected for the P–T conditions of the peak of metamorphism in the area previously determined from mineral geothermobarometers. Lower densities of carbonic fluids mainly result from the reequilibration of earlier trapped fluid inclusions during retrograde metamorphism and final uplift of the metamorphic terrane, but a new influx of carbonic fluids during the retrograde event remains possible. Carbonic fluids can be produced in situ from decarbonation reactions in interlayered impure marbles during the prograde event or derived from CO2 flushing from underlying basic intrusions. The aqueous fluids present large variations of composition (0.5 to 30 wt.% NaCl equivalent) and densities (1.16 to 0.57 g/cm3). They clearly correspond to post-metamorphic fluids because they mainly occur along microfractures, they do not show any evidence of immiscibility with the carbonic fluids and mixed aquo-carbonic inclusions have not been observed. The percolation of aqueous fluids is related to the Pan-African tectonometamorphic event.  相似文献   
790.
On January 16, 2002, short-term unrest occurred at San Miguel volcano. A gas-and-steamash plume rose a few hundred meters above the summit crater. An anomalous microseismicity pattern, about 75 events between 7:30 and 10:30 hours, was also observed. Continuous monitoring of CO2 efflux on the volcano started on November 24, 2001, in the attempt to provide a multidisciplinary approach for its volcanic surveillance. The background mean of the diffuse CO2 emission is about 16 g m-2 d-1, but a 17- fold increase, up to 270 g m-2 d-1, was detected on January 7, nine days before the January 2002 short-term unrest at San Miguel volcano. These observed anomalous changes on diffuse CO2 degassing could be related to either a sharp increase of CO2 pressure within the volcanic-hydrothermal system or degassing from an uprising fresh gas-rich magma within the shallow plumbing system of the volcano since meteorological fluctuations cannot explain this observed increase of diffuse CO2 emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号