首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   643篇
  免费   71篇
  国内免费   182篇
测绘学   10篇
大气科学   206篇
地球物理   126篇
地质学   359篇
海洋学   102篇
天文学   12篇
综合类   27篇
自然地理   54篇
  2024年   4篇
  2023年   10篇
  2022年   19篇
  2021年   18篇
  2020年   12篇
  2019年   18篇
  2018年   16篇
  2017年   17篇
  2016年   28篇
  2015年   26篇
  2014年   35篇
  2013年   59篇
  2012年   30篇
  2011年   23篇
  2010年   32篇
  2009年   44篇
  2008年   64篇
  2007年   53篇
  2006年   50篇
  2005年   35篇
  2004年   33篇
  2003年   19篇
  2002年   20篇
  2001年   20篇
  2000年   33篇
  1999年   13篇
  1998年   23篇
  1997年   27篇
  1996年   10篇
  1995年   11篇
  1994年   15篇
  1993年   17篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   10篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有896条查询结果,搜索用时 78 毫秒
771.
利用陶瓷头土壤溶液收集器采集2006年7月~2007年8月问长白山阔叶红松天然林不同深度(15cm和60 cm)土壤溶液,探讨应用气液萃取平衡-气相色谱法测定森林土壤溶液中溶解性气体N_2O和CO_2浓度的可行性,并利用此方法研究林地不同深度土壤溶液中两种气体含量特征及其影响机理.研究结果显示观测期内林地15 cm和60 cm深度土壤溶液中溶解性CO_2浓度的变化范围分别为5.26~10.71μg·mL~(-1)(C)和3.13~6.16 μg·mL~(-1)(C),溶解性N_2O浓度的变化范围分别为2.44~13.40 ng·mL~(-1)(N)和3.23~27.98 ng·mL~(-1)(N).阔叶红松天然林土壤溶液中溶解性CO_2和N_2O浓度均呈现出明显的季节性变化.春融后的降水促进了土壤溶液中溶解性N_2O产生,尤其在60 cm深度.与60 cm深度相比,林地15 cm深度溶液中溶解性CO_2浓度的季节性变化更明显,尤其在植物生长旺季.逐步回归分析显示,水溶性有机碳含量可以解释林地不同深度溶液中溶解性CO_2浓度变化的29%;水溶性有机氮含量可以解释林地60 cm深度溶解性N_2O浓度变化的34%.因此,水溶性有机碳和有机氮分别是长白山阔叶红松林土壤溶液溶解性CO_2和N_2O形成的重要因子.同时研究结果表明本文实验方法对于测定林地不同深度土壤溶液中溶解性N_2O和CO_2含量均有较好的适用性,连续三次萃取后所获得的气体浓度可有效反映溶液中的实际气体浓度.  相似文献   
772.
固体地球科学要积极参与全球变化的研究。全球增暖的温室气体CO2增率与大气升温呈正相关性。第四纪的最末1.5Ma间有17次冰期,其成因可能与米兰科维奇周期律有关。除现今估算的人类每年燃料排放的CO2量外,地球内部由火山和地震等的大地构造原因释放的CO2量需定量估算,甚至可能是大气CO2增率的主要来源。我国文化历史悠久,对历史中的盛世与气候变迁关系应深入研究。我国的自然条件复杂而独特,应研究其变化特色  相似文献   
773.
Rescarches on helium, argon, carbon dioxide and methane are very significant in studies of mantle substance characteristics and mantle evolution. A < -shaped pattern of the isotope composition distribution of helium and argon sourced from the mantle and the crust, abundance distribution, isotopic composition and reservoir formation of carbon dioxide, and mantle-sourced methane are discussed.  相似文献   
774.
In the shallow magma chambers of volcanoes, the CO2 content of most basaltic melts is above the solubility limit. This implies that the chamber contains gas bubbles, which rise through the magma and expand. Thus, the volume of the chamber, its gas volume fraction and the gas flux into the conduit change with time in a systematic manner as a function of the size and number of gas bubbles. Changes in gas flux and gas volume are calculated for a bubble size distribution and related to changes in eruption regimes. Fire fountain activity, only present during the first quarter of the eruption, requires that the bubbles are larger than a certain size, which depends on the gas flux and on the bubble content[1]. As the chamber degasses, it loses its largest gas bubbles and the gas flux decreases, eventually suppressing the fire fountaining activity. Ultimately, an eruption stops when the chamber contains only a few tiny bubbles. More generally, the evolution of basaltic eruptions is governed by a dimensionless number, τ * ≈ τgΔρaO2/(18μhc), where τ = a characteristic time for degassing; a0 = the initial bubble diameter; μ = the magma viscosity; and hc = the thickness of the degassing layer. Two eruptions of the Kilauea volcano, Mauna Ulu (1969–1971) and Puu O'o (1983—present), provide data on erupted gas volume and the inflation rate of the edifice, which help constrain the spatial distribution of bubbles in the magma chamber: bubbles come mainly from the bottom of the reservoir, either by in situ nucleation long before the eruption or within a vesiculated liquid. Although the gas flux at the roof of the chamber takes similar values for both eruptions, the duration of both the fire fountaining activity and the entire eruption was 6 times shorter at Mauna Ulu than during the Puu O'o eruption. The dimensionless analysis explains the difference by a degassing layer 6 times thinner in the former than the latter, due to a 2 year delay in starting the Mauna Ulu eruption compared to the Puu O'o eruption.  相似文献   
775.
Siliceous sourced Tertiary oils from the Circum-Pacific area of Japan, Russia and the U.S.A. have a heavy carbon isotope composition, monomodal n-alkane distributions, and nearly identical regular sterane compositions with a predominance of C27 homologues. These are consistent with open marine depositional environments dominated by diatomaceous organic matter. However, a number of alkane and biomarker parameters such as Pr/Ph, CPI, relative concentration of 28,30-bisnorhopane, and the C35/C34 homohopane ratio indicate more oxic depositional environments for the source rocks of Japan and Russia. In contrast to the California Monterey Formation sourced oils, petroleums with low maturity levels from the North Sakhalin basin, Russia and the Akita basin, Japan have lower concentrations of asphaltenes and sulphur and are characterized by higher API gravities. A correlation of extractable organic matter from source rocks vs the least matured petroleums demonstrates that oil expulsion in siliceous shales of the Akita basin occurs at a maturity level corresponding to Ro≥0.65%, which is in the range of the conventional oil window (Ro = 0.6−1.1%).  相似文献   
776.
Middle tropospheric CO2 air concentrations, measured during a four year observation period at an Alpine Station (Plateau Rosa, Italian North-West Alps, 3480 m a.s.l.), have been correlated with the relevant synoptic air trajectories crossing the observation site. Meaningful relationships have been found among average curvature, altitude and potential temperature of clusters of homogeneous trajectories and their related CO2 concentrations measured at Plateau Rosà, allowing an objective identification of weather conditions giving rise to fully mixed air masses corresponding to background atmospheric CO2 levels. Air trajectories were calculated by using the wind speed fields provided by the ECMWF objective analysis. As during the analysis period a change of the ECMWF model resolution occurred (from T106 to T213), the study was also carried out in the sub-periods respectively preceding and following this change (in September 1991). Even if some features of the wind field turned out to be statistically different in the two sub-periods, nevertheless the differences on the trajectory patterns were small enough to keep almost unchanged all conclusions drawn for the whole four-year period.  相似文献   
777.
Accumulation of total CO2 (CT) was investigated in the sub-halocline deep water of the Gotland Sea (Baltic Sea) during a period of stagnation from 1995 to 1999. Depth profiles for CT, nitrate, phosphate, and oxygen were measured during seven cruises in a grid consisting of 26 stations. The mean CT increased by more than 60 μmol/kg from October 1995 to July 1999 corresponding to a mean accumulation rate of 1.1 mol/m2 year. Taking into account vertical mixing, the vertical distribution of the CT accumulation was used to determine mineralization rates at different depths. High rates immediately below the halocline indicated the existence of a fraction of organic matter, which is rapidly mineralized during sinking through the water column. A second fraction is more refractive and accumulates at the sediment surface in the deep center of the basin where it is slowly mineralized and partly buried. Phosphate release rates in anoxic waters and especially at the redoxcline were substantially higher than those estimated on the basis of the carbon mineralization and the Redfield C/P ratio. This is attributed to non-Redfield mineralization ratios and the dissolution of iron oxide/phosphate associates. The formation of nitrate by mineralization under oxic conditions was almost completely compensated by denitrification. Using the carbon mineralization rates and a C/N ratio of 8.4, a denitrification rate of 280 mmol/m2 year was obtained, which approximately balances the input of nitrate/ammonia into the surface water. Relating the apparent oxygen utilization (AOU) to the CT fraction that was generated by mineralization yielded a carbon mineralization/O2 consumption ratio of 0.83.  相似文献   
778.
郭水伙 《台湾海峡》1995,14(4):320-327
据1984年5月至1985年2月调查资料,计算了该水体中二氧化碳体系各分量的含量,研究了它们与pH,HCO^-3/CO^2-3,Alk,DIN,PO^3-4-9,Chl-aDO,S,t等环境因子的相关性。结果表明PCO3,CO2(T),HCO^-3,CO^2-3与pH,HCO^-3/CO^2-3呈极显著的线性相关;HCO^-3,CO^2-3ΣCO2与Alk也呈非常显著的线性相关。  相似文献   
779.
Diurnal changes in seawater temperature affect the amount of air–sea gas exchange taking place through changes in solubility and buoyancy-driven nocturnal convection, which enhances the gas transfer velocity. We use a combination of in situ and satellite derived radiometric measurements and a modified version of the General Ocean Turbulence Model (GOTM), which includes the National Oceanic and Atmospheric Administration Coupled-Ocean Atmospheric Response Experiment (NOAA-COARE) air–sea gas transfer parameterization, to investigate heat and carbon dioxide exchange over the diurnal cycle in the Tropical Atlantic. A new term based on a water-side convective velocity scale (w*w) is included, to improve parameterization of convectively driven gas transfer. Meteorological data from the PIRATA mooring located at 10°S10°W in the Tropical Atlantic are used, in conjunction with cloud cover estimates from Meteosat-7, to calculate fluxes of longwave, latent and sensible heat along with a heat budget and temperature profiles during February 2002. Twin model experiments, representing idealistic and realistic conditions, reveal that over daily time scales the additional contribution to gas exchange from convective overturning is important. Increases in transfer velocity of up to 20% are observed during times of strong insolation and low wind speeds (<6 m s−1); the greatest enhancement from w*w to the CO2 flux occurs when diurnal warming is large. Hence, air–sea fluxes of CO2 calculated using simple parameterizations underestimate the contribution from convective processes. The results support the need for parameterizations of gas transfer that are based on more than wind speed alone and include information about the heat budget.  相似文献   
780.
In situ measurements of ammonium and carbon dioxide fluxes were performed using benthic chambers at the end of spring and the end of summer in two soft-bottom Abra alba communities of the western English Channel (North Brittany): the muddy sand community (5 m, about 10% of surface irradiance) and the fine-sand community (19 m, about 1% of surface irradiance). High rates of ammonium regeneration were measured in the two communities at the end of summer (296.03±40.07 and 201.7±62.74 μmolN m−2 h−1, respectively) as well as high respiration rates (2.60±0.94 and 2.23±0.59 mmolC m−2 h−1, respectively). Significant benthic gross primary production (up to 6.11 mmolC m−2 h−1) was measured in the muddy sand community but no benthic primary production was measured in the fine-sand community. It suggests that microphytobenthic production values used in simulations previously published for these two communities were overestimated while values of community respiration were underestimated. The study confirms that this benthic system is heterotrophic and strengthens the idea that an important pelagic-benthic coupling is required for the functioning in such coastal ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号