首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   695篇
  免费   96篇
  国内免费   34篇
测绘学   23篇
大气科学   45篇
地球物理   483篇
地质学   78篇
海洋学   81篇
天文学   63篇
综合类   10篇
自然地理   42篇
  2023年   10篇
  2022年   12篇
  2021年   14篇
  2020年   18篇
  2019年   19篇
  2018年   14篇
  2017年   27篇
  2016年   18篇
  2015年   30篇
  2014年   33篇
  2013年   36篇
  2012年   19篇
  2011年   31篇
  2010年   19篇
  2009年   67篇
  2008年   55篇
  2007年   48篇
  2006年   43篇
  2005年   22篇
  2004年   32篇
  2003年   32篇
  2002年   22篇
  2001年   11篇
  2000年   24篇
  1999年   11篇
  1998年   20篇
  1997年   12篇
  1996年   12篇
  1995年   15篇
  1994年   23篇
  1993年   13篇
  1992年   9篇
  1991年   8篇
  1990年   14篇
  1989年   9篇
  1988年   7篇
  1987年   11篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有825条查询结果,搜索用时 125 毫秒
91.
This paper presents an analytical study evaluating the influence of ground motion duration on structural damage of 3‐story, 9‐story, and 20‐story SAC steel moment resisting frame buildings designed for downtown Seattle, WA, USA, using pre‐Northridge codes. Two‐dimensional nonlinear finite element models of the buildings are used to estimate the damage induced by the ground motions. A set of 44 ground motions is used to study the combined effect of spectral acceleration and ground motion significant duration on drift and damage measures. In addition, 10 spectrally equivalent short‐duration shallow crustal ground motions and long‐duration subduction zone records are selected to isolate duration effect and assess its effect on the response. For each ground motion pair, incremental dynamic analyses are performed at at least 20 intensity levels and response measures such as peak interstory drift ratio and energy dissipated are tracked. These response measures are combined into two damage metrics that account for the ductility and energy dissipation. Results indicate that the duration of the ground motion influences, above all, the combined damage measures, although some effect on drift‐based response measures is also observed for larger levels of drift. These results indicate that because the current assessment methodologies do not capture the effects of ground motion duration, both performance‐based and code‐based assessment methodologies should be revised to consider damage measures that are sensitive to duration. Copyright © 2016 John Wiley & Sons, Ltd  相似文献   
92.
The response of a rigid block supported on a horizontally moving foundation through a dry‐friction contact is investigated to near‐fault ground motions. Such motions can be thought of as consisting of a coherent component (‘pulse’) and an incoherent component, which can be described as a band‐limited ‘random noise’. The equation of motion of this strongly nonlinear system is reduced to a normalized form that reveals important parameters of the problem such as the critical acceleration ratio. The response of the sliding block to a set of uniformly processed near‐fault motions, covering a sufficiently wide range of magnitudes, is evaluated numerically for selected discrete values of the acceleration ratio. For each value of the critical acceleration ratio, the numerically computed residual slips are fitted with a Weibull (Gumbel type III) extreme value probability distribution. This allows the establishment of regression equations that describe accurately design sliding curves corresponding to various levels of non‐exceedance probability. The analysis reveals that the coherent component of motion contributes significantly to the response of the sliding block. Furthermore, the relevant acceleration in specifying the critical acceleration ratio is the (normalized) amplitude, αH_pulse, of the pulse and not the (normalized) amplitude of the incoherent component αH. Finally, the incoherent component is described quantitatively in terms of the root‐mean‐square acceleration aRMS, and an attempt is made to understand its influence on the response of the sliding block. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
93.
A closed-form wave equation analytic solution of two-dimensional scattering and diffraction of outof-plane(SH) waves by an almost semi-circular shallow cylindrical hill on a flat, elastic and homogeneous half space is proposed by applying the discrete Fourier series expansions of sine and cosine functions. The semi-circular hill problem is discussed as a special case for the new formulated equation.Compared with the previous semi-circular cases solutions, the present method can give surface displacement amplitudes which agrees well with previous results. Although the proposed equation can only solve the problem of SH-waves diffracted by almost semi-circular shallow hills, the stress and displacement residual amplitudes are numerical insignificantly everywhere. Moreover, the influences of the depth-towidth ratio(a parameter defined in this paper to evaluate the shallowness of the topography of hills) on ground motions are presented and summarized. The limitations and errors of truncation from Graf's addition theorem and Fourier series equations in the present paper are also discussed.  相似文献   
94.
The paper describes the distinctive features of the pseudo‐dynamic test method as implemented at the ELSA reaction‐wall facility. Both hardware and software aspects are considered. Particular attention is devoted to the digital control system and to a coupled numerical–experimental substructuring technique allowing realistic earthquake testing of very large structures. Mathematical and implementation details corresponding to this testing technique are given for both synchronous and asynchronous input motion. Selected test results illustrate the advantages of the presented features. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
95.
Ground motions affected by directivity focusing at near-field stations contain distinct pulses in acceleration, velocity, and displacement histories. For the same Peak Ground Acceleration (PGA) and duration of shaking, ground motions with directivity pulses can generate much higher base shears, inter-storey drifts, and roof displacements in high-rise buildings as compared to the 1940 El Centro ground motion which does not contain these pulses. Also, the ductility demand can be much higher and the effectiveness of supplemental damping lower for pulse-like ground motions. This paper presents a simple interpretation of the response characteristics of three recorded and one synthetic near-field ground motions. It is seen that for pulse-like ground motions—similar to any other ground motion—the Peak values of Ground Acceleration, Velocity, and Displacement (PGA, PGV and PGD) are the key response parameters. Near-field ground motions with directivity effects tend to have high PGV/PGA ratio, which dramatically influences their response characteristics. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
96.
An experimental study on vortex-induced motions (VIM) of a deep-draft semi-submersible (DDS) was carried out in a towing tank, with the aim to investigate the VIM effects on the overall hydrodynamics of the structure. In order to study the fluid physics associated with VIM of the DDS, a comprehensive numerical simulation was conducted to examine the characteristics of vortex shedding processes and their interactions due to multiple cylindrical columns. The experimental measurements were obtained for horizontal plane motions including transverse, in-line and yaw motions as well as drag and lift forces on the structure. Spectral analysis was further carried out based on the recorded force time history. These data were subsequently used to validate the numerical model. Detailed numerical results on the vortex flow characteristics revealed that during the “lock-in”, the vortex shedding processes of the upstream columns enhance the vortex shedding processes of the downstream columns leading to the rapid increase of the magnitude of VIM. In addition to the experimental measurements, for the two uniform flow incidences (0° and 45°) investigated, comprehensive numerical data of the parametric study on the VIM characteristics at a wide range of current strength will also serve as quality benchmarks for future study and provide guidance for practical design.  相似文献   
97.
An approximate‐simple method for nonlinear response estimates of reinforced concrete frames subjected to near‐field and far‐field records is presented in this paper. The approximate method is based on equivalent single‐degree‐of‐freedom and linear multi‐degree‐of‐freedom models. In this procedure, the nonlinear maximum roof displacement is estimated using an effective period factor and elastic response spectrum with an equivalent damping. The effective period factor was proposed for far‐field and near‐field ground motion records. For regions of high seismicity, the maximum roof displacement can be estimated by applying an effective period factor of 2.3 and 2.1 for near‐field and far‐field records, respectively, and 9% damped displacement response spectrum. For regions of moderate seismicity, a lower effective period factor of 1.9 and 1.8, for near‐field and far‐field records, respectively, can be applied to estimate the maximum roof displacement. A relationship between linear and nonlinear response of multi‐degree‐of‐freedom systems was also proposed to obtain estimates of the maximum inter‐story drift of nonlinear responding reinforced concrete frames. In addition, the effects of number of ground motion records used in the analyses on the scatters of results were investigated. The required number of ground motions to produce a reliable response was proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
98.
Seismic pounding of base‐isolated buildings has been mostly studied in the past assuming unidirectional excitation. Therefore, in this study, the effects of seismic pounding on the response of base‐isolated reinforced concrete buildings under bidirectional excitation are investigated. For this purpose, a three‐dimensional finite element model of a code‐compliant four‐story building is considered, where a newly developed contact element that accounts for friction and is capable of simulating pounding with retaining walls at the base, is used. Nonlinear behavior of the superstructure as well as the isolation system is considered. The performance of the building is evaluated separately for far‐fault non‐pulse‐like ground motions and near‐fault pulse‐like ground motions, which are weighted scaled to represent two levels of shaking viz. the design earthquake (DE) level and the risk‐targeted maximum considered earthquake (MCER) level. Nonlinear time‐history analyses are carried out considering lower bound as well as upper bound properties of isolators. The influence of separation distance between the building and the retaining walls at the base is also investigated. It is found that if pounding is avoided, the performance of the building is satisfactory in terms of limiting structural and nonstructural damage, under DE‐level motions and MCER‐level far‐fault motions, whereas unacceptably large demands are imposed by MCER‐level near‐fault motions. In the case of seismic pounding, MCER‐level near‐fault motions are found to be detrimental, where the effect of pounding is mostly concentrated at the first story. In addition, it is determined that considering unidirectional excitation instead of bidirectional excitation for MCER‐level near‐fault motions provides highly unconservative estimates of superstructure demands. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
99.
In this study, attempts are made to investigate the effects of inertial soil–structure interaction (SSI) on damping coefficients subjected to pulse-like near-fault ground motions. To this end, a suit of 91 pulse-like near-fault ground motions is adopted. The soil and superstructure are idealized employing cone model and single-degree-of-freedom (SDOF) oscillator, respectively. The results demonstrate that soil flexibility reduces and amplifies the damping coefficients for structural viscous damping levels higher and lower than 5%, respectively. The coefficients reach one for both acceleration and displacement responses in cases of dominant SSI effects. The effect of structure dimensions on damping confidents are found insignificant. Moreover, damping coefficients of displacement responses are higher than those of acceleration responses for both fixed-base and flexible-base systems. Evaluation of damping correction factor introduced by FEMA 440 shows its inefficiency to predict acceleration response of soil–structure systems under pulse-like near-fault ground motions. Soil flexibility makes the damping correction factor of moderate earthquakes more pronounced and a distinctive peak value is reported for cases with dominant SSI effects.  相似文献   
100.
The purpose of this study, which concerns the stochastic dynamic stiffness of foundations for large offshore wind turbines, is to quantify uncertainties related to the first natural frequency of a turbine supported by a surface footing and to estimate the low event probabilities. Herein, a simple model of a wind turbine structure with equivalent coupled springs at the base is calibrated with the mean soil property values. A semianalytical solution, based on the Green׳s function for a layered half-space is utilized for estimation of foundation responses. Soil elastic modulus and layer depth are considered as random variables with lognormal distributions. The uncertainties are quantified, and the estimation of rare events of the first natural frequency is discussed through an advanced reliability approach based on subset simulation. This analysis represents a first step in the estimation of the safety with respect to the failure of a turbine in the fatigue limit state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号