首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38700篇
  免费   6091篇
  国内免费   8169篇
测绘学   4140篇
大气科学   4950篇
地球物理   6687篇
地质学   20914篇
海洋学   4334篇
天文学   3386篇
综合类   2458篇
自然地理   6091篇
  2024年   250篇
  2023年   680篇
  2022年   1344篇
  2021年   1547篇
  2020年   1466篇
  2019年   1788篇
  2018年   1272篇
  2017年   1560篇
  2016年   1597篇
  2015年   1761篇
  2014年   2200篇
  2013年   2242篇
  2012年   2278篇
  2011年   2413篇
  2010年   2078篇
  2009年   2625篇
  2008年   2547篇
  2007年   2597篇
  2006年   2537篇
  2005年   2376篇
  2004年   2080篇
  2003年   1969篇
  2002年   1726篇
  2001年   1523篇
  2000年   1525篇
  1999年   1322篇
  1998年   1147篇
  1997年   823篇
  1996年   681篇
  1995年   584篇
  1994年   549篇
  1993年   478篇
  1992年   332篇
  1991年   292篇
  1990年   201篇
  1989年   159篇
  1988年   130篇
  1987年   78篇
  1986年   40篇
  1985年   32篇
  1984年   21篇
  1983年   18篇
  1982年   13篇
  1981年   9篇
  1980年   8篇
  1979年   5篇
  1978年   14篇
  1977年   6篇
  1976年   4篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
881.
882.
We have constructed an analytical model of active galactic nuclei (AGN) feedback and studied its implications for elliptical galaxies and galaxy clusters. The results show that momentum injection above a critical value will eject material from low-mass elliptical galaxies, and leads to an X-ray luminosity, L X, that is  ∝σ8−10  , depending on the AGN fuelling mechanism, where σ is the velocity dispersion of the hot gas. This result agrees well with both observations and semi-analytic models. In more massive ellipticals and clusters, AGN outflows quickly become buoyancy dominated. This necessarily means that heating by a central cluster AGN redistributes the intracluster medium (ICM) such that the mass of hot gas, within the cooling radius, should be  ∝ L X(< r cool)/[ g ( r cool)σ]  , where   g ( r cool)  is the gravitational acceleration at the cooling radius. This prediction is confirmed using observations of seven clusters. The same mechanism also defines a critical ICM cooling time of  ∼0.5 Gyr  , which is in reasonable agreement with recent observations showing that star formation and AGN activity are triggered below a universal cooling time threshold.  相似文献   
883.
There is an apparent dichotomy between the metal-poor  ([Fe/H]≤−2)  yet carbon-normal giants and their carbon-rich counterparts. The former undergo significant depletion of carbon on the red giant branch after they have undergone first dredge-up, whereas the latter do not appear to experience significant depletion. We investigate this in the context that the extra mixing occurs via the thermohaline instability that arises due to the burning of  3He  . We present the evolution of [C/Fe], [N/Fe] and  12C/13C  for three models: a carbon-normal metal-poor star, and two stars that have accreted material from a  1.5 M  AGB companion, one having received  0.01 M  of material and the other having received  0.1 M  . We find the behaviour of the carbon-normal metal-poor stars is well reproduced by this mechanism. In addition, our models also show that the efficiency of carbon-depletion is significantly reduced in carbon-rich stars. This extra-mixing mechanism is able to reproduce the observed properties of both carbon-normal and carbon-rich stars.  相似文献   
884.
We perform a study of the spatial and kinematical distribution of young open clusters in the solar neighbourhood, discerning between bound clusters and transient stellar condensations within our sample. Then, we discriminate between Gould Belt (GB) and local Galactic disc (LGD) members, using our previous estimate of the structural parameters of both systems obtained from a sample of O-B6 Hipparcos stars. Single membership probabilities of the clusters are also calculated in the separation process. Using this classified sample, we analyse the spatial structure and the kinematic behaviour of the cluster system in the GB. The two star formation regions that dominate and give the GB its characteristic-inclined shape show a striking difference in their content of star clusters: while Ori OB1 is richly populated by open clusters, not a single one can be found within the boundaries of Sco OB2. This is mirrored in the velocity space, translating again into an abundance of clusters in the region of the kinematic space populated by the members of Ori OB1, and a marginal number of them associated with Sco OB2. We interpret all these differences by characterizing the Orion region as a cluster complex typically surrounded by a stellar halo, and the Sco-Cen region as an OB association in the outskirts of the complex. In the light of these results, we study the nature of the GB with respect to the optical segment of the Orion Arm, and we propose that the different content of star clusters, the different heights over the Galactic plane and the different residual velocities of Ori OB1 and Sco OB2 can be explained in terms of their relative position to the density maximum of the Local Arm in the solar neighbourhood. Although morphologically intriguing, the GB appears to be the result of our local and biased view of a larger star cluster complex in the Local Arm, that could be explained by the internal dynamics of the Galactic disc.  相似文献   
885.
886.
887.
888.
889.
We present the Hα gas kinematics of 21 representative barred spiral galaxies belonging to the BHαBAR sample. The galaxies were observed with FaNTOmM, a Fabry–Perot integral-field spectrometer, on three different telescopes. The three-dimensional data cubes were processed through a robust pipeline with the aim of providing the most homogeneous and accurate data set possible useful for further analysis. The data cubes were spatially binned to a constant signal-to-noise ratio, typically around 7. Maps of the monochromatic Hα emission line and of the velocity field were generated and the kinematical parameters were derived for the whole sample using tilted-ring models. The photometrical and kinematical parameters (position angle of the major axis, inclination, systemic velocity and kinematical centre) are in relative good agreement, except perhaps for the later-type spirals.  相似文献   
890.
It is generally believed that the complexity and variability of the light curves of gamma-ray bursts (GRBs) are caused by the internal shocks, which would occur when a rapid shell catches up a slower one and collides with it. The electrons in the shock layer are heated by the shocks and radiate via the mechanisms of synchrotron radiation and inverse Compton scattering. Based on relativistic kinematics, a relation between the photon number of the emission from the rapidly moving shock layer and the number of the photons received by an observer is derived. Then, employing the angular spreading of the internal shock emission, the curve equation and profile of a single pulse are obtained, and the shape is typically in the shape of a fast rise and exponential decline. Furthermore, by using the model of the successive collisions of multiple shells under the condition of reasonable parameters, the observed light curves are fitted with a rather good effect. Therefore, by this means, more different types of light curves of GRBs can be explained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号