Basin-fill sequences of Mesozoic typical basins in the Yanshan area, North China may be divided into four phases, reflecting lithosphere tectonic evolution from flexure (T3), flexure with weak rifting (J1+2), tectonic transition (J3), and rifting (K). Except the first phase, the other three phases all start with lava and volcaniclastic rocks, and end with thick coarse clastic rocks and/or conglomerates, showing cyclic basin development rather than simple cyclic rift mechanism and disciplinary basin-stress change from extension to compression in each phase. Prototype basin analysis, based on basin-fill sequences, paleocurrent distribution and depositional systems, shows that single basin-strike and structural-line direction controlling basin development had evidently changed from east-west to northeast in Late Jurassic in the Yanshan area, although basin group still occurred in east-west zonal distribution. Till Early Cretaceous, main structural-line strike controlling basins just turned to northeast by north in the studied area. 相似文献
The sheeted quartz–sulfide veins of the Radzimowice Au–As–Cu deposit in the Kaczawa Mountains are related to Upper Carboniferous post-collisional potassic magmatism of the composite Zelezniak porphyry intrusion. Multiple intrusive activity ranges from early calc-alkaline to sub-alkaline and alkaline rocks and is followed by multiple hydrothermal events. Early crustally derived dacitic magma has low mg# (<63) and very low concentrations of mantle-compatible trace elements, high large-ion lithophile elements (LILE), moderate light rare-earth elements (LREE), and low high-field-strength elements (HFSE). Later phases of more alkaline rocks have higher mg# (60–70), and LILE, LREE, and HFSE characteristics that indicate mafic magma contributions in a felsic magma chamber. The last episode of the magmatic evolution is represented by lamprophyre dikes which pre-date ore mineralization and are spatially related to quartz–sulfide–carbonate veins. The dikes consist of kersantite and spessartite of calc-alkaline affinity with K2O/Na2O ratios of 1.1–1.9, mg# of 77–79, and high abundances of mantle-compatible trace elements such as Cr, Ni, and V. They have high LILE, low LREE, and low HFSE contents suggesting a subduction-related post-collisional arc-setting. The mineralization started with arsenopyrite that was strongly brecciated and overprinted by multiple quartz–carbonate phases associated with base-metal sulfides and Au–Ag–Bi–Te–Pb±S minerals. The sulfur isotope composition of sulfides ranges from –1.1 to 2.8 34S and suggests a magmatic source. At least two generations of gold deposition are recognized: (1) early refractory, and (2) subsequent non-refractory gold mineralization of epithermal style. Co-rich arsenopyrite with refractory gold and pyrite are the most abundant minerals of the early stage of sulfide precipitation. Early arsenopyrite formed at 535–345°C along the arsenopyrite–pyrrhotite–loellingite buffer and late arsenopyrite crystallized below 370°C along the arsenopyrite–pyrite buffer. Non-refractory gold associated with base-metal sulfides and with Bi–Te–Ag–Pb–S mineral assemblages has an average fineness of about 685, and is represented by electrum of two generations, and minor maldonite (Au2Bi). Fluid inclusions from various quartz generations co-genetic with base-metal sulfides and associated with carbonates, tellurides and non-refractory gold indicate fluids with moderate salinity (9–15 wt% NaCl equiv.) and a temperature and pressure drop from 350 to 190°C and 1.2 to 0.8 kbar, respectively. According to the result of the sulfur isotope fractionation geothermometer the temperature of base-metal crystallization was in the range from 322 to 289°C. Preliminary results of oxygen isotope studies of quartz from veins indicate a gradual increase in the proportion of meteoric water in the epithermal stage. The gold to silver ratio in ore samples with >3 ppm Au is about 1:5 (geometric mean). Hydrothermal alteration started with sericitization, pyritization, and kaolinitization in vein selvages followed by alkaline hydrothermal alteration of propylitic character (illitization and chloritization), albitization and carbonatization. The mineralization of the Radzimowice deposit is considered as related to alkaline magmatism and is characterized by the superposition of low-sulfidation epithermal mineralization on higher-temperature and deeper-seated mesothermal/porphyry style.Editorial handling: B. Lehmann 相似文献
In this paper, we study theoretically and experimentally the coherent control of non-resonant two-photon transition in a molecular system (Perylene dissolved in chloroform solution) by shaping the femtosecond pulses with simple phase patterns (cosinusoidal and π phase step-function shape). The control efficiency of the two-photon transition probability is correlated with both the laser field and the molecular absorption bandwidth. Our results demonstrate that, the two-photon transition probability in a molecular system can be reduced but not completely eliminated by manipulating the laser field, and the control efficiency is minimal when the molecular absorption bandwidth is larger than twice the laser spectral bandwidth. 相似文献
Mooring and shipboard data collected between 1992 and 1995 delineate the circulation over the north central Chukchi shelf. Previous studies indicated that Pacific waters crossed the Chukchi shelf through Herald Valley (in the west) and Barrow Canyon (in the east). We find a third branch (through the Central Channel) onto the outer shelf. The Central Channel transport varies seasonally in phase with Bering Strait transport, and is 0.2 Sv on average, although some of this might include water entrained from the outflow through Herald Valley. A portion of the Central Channel outflow moves eastward and converges with the Alaskan Coastal Current at the head of Barrow Canyon. The remainder appears to continue northeastward over the central outer shelf toward the shelfbreak, joined by outflow from Herald Valley. The mean flow opposes the prevailing winds and is primarily forced by the sea-level slope between the Pacific and Arctic oceans. Current variations are mainly wind forced, but baroclinic forcing, associated with upstream dense-water formation in coastal polynyas might occasionally be important.Winter water-mass modification depends crucially on the fall and winter winds, which control seasonal ice development. An extensive fall ice cover delays cooling, limits new ice formation, and results in little salinization. In such years, Bering shelf waters cross the Chukchi shelf with little modification. In contrast, extensive open water in fall leads to early and rapid cooling, and if accompanied by vigorous ice production within coastal polynyas, results in the production of high-salinity (>33) shelf waters. Such interannual variability likely affects slope processes and the transport of Pacific waters into the Arctic Ocean interior. 相似文献