首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2819篇
  免费   270篇
  国内免费   377篇
测绘学   322篇
大气科学   324篇
地球物理   348篇
地质学   563篇
海洋学   940篇
天文学   18篇
综合类   172篇
自然地理   779篇
  2024年   8篇
  2023年   24篇
  2022年   94篇
  2021年   104篇
  2020年   109篇
  2019年   117篇
  2018年   80篇
  2017年   120篇
  2016年   124篇
  2015年   124篇
  2014年   157篇
  2013年   209篇
  2012年   155篇
  2011年   160篇
  2010年   113篇
  2009年   150篇
  2008年   168篇
  2007年   133篇
  2006年   174篇
  2005年   134篇
  2004年   111篇
  2003年   90篇
  2002年   114篇
  2001年   94篇
  2000年   91篇
  1999年   71篇
  1998年   66篇
  1997年   55篇
  1996年   51篇
  1995年   46篇
  1994年   38篇
  1993年   35篇
  1992年   29篇
  1991年   11篇
  1990年   12篇
  1989年   11篇
  1988年   8篇
  1987年   14篇
  1986年   7篇
  1985年   15篇
  1984年   10篇
  1983年   11篇
  1982年   8篇
  1981年   6篇
  1980年   4篇
  1978年   1篇
排序方式: 共有3466条查询结果,搜索用时 31 毫秒
31.
Wet atmospheric deposition of dissolved N, P and Si species is studied in well-mixed coastal ecosystem to evaluate its potential to stimulate photosynthetic activities in nutrient-depleted conditions. Our results show that, during spring, seawater is greatly depleted in major nutrients: Dissolved Inorganic Nitrogen (DIN), Dissolved Inorganic Phosphorus (DIP) and Silicic acid (Si), in parallel with an increase of phytoplanktonic biomass. In spring (March–May) and summer (June–September), wet atmospheric deposition is the predominant source (>60%, relative to riverine contribution) for nitrates and ammonium inputs to this N-limited coastal ecosystem. During winter (October–February), riverine inputs of DIN predominate (>80%) and are annually the most important source of DIP (>90%). This situation allows us to calculate the possibility for a significant contribution to primary production in May 2003, from atmospheric deposition (total input for DIN ≈300 kg km−2 month−1). Based on usual Redfield ratios and assuming that all of the atmospheric-derived N (AD-N) in rainwater is bioavailable for phytoplankton growth, we can estimate new production due to AD-N of 950 mg C m−2 month−1, during this period of depletion in the water column. During the same episode (May 2003), photosynthetic activity rate, considered as gross primary production, was estimated to approximately 30 300 mg C m−2 month−1. Calculation indicates that new photosynthetic activity due to wet atmospheric inputs of nitrogen could be up to 3%.  相似文献   
32.
Cycladophora davisiana, a radiolarian species dwelling at mesopelagic depths, is known as a representative glacial fauna due to its unique distribution during glacial periods. In the present ocean, abundant production of C. davisiana is only observed in the Okhotsk Sea, indicating an adaptation of C. davisiana for seasonal sea-ice covered conditions. We found pronounced abundant production of C. davisiana during the early to middle Holocene in the Okhotsk Sea, suggesting more favorable conditions for C. davisiana than the present Okhotsk Sea. In order to clarify the reason, oceanographic conditions during the Holocene were reconstructed based on biomarkers, lithogenic grains including ice-rafted debris (IRD), biogenic opal, and total organic carbon (TOC) in two sediment cores from the Okhotsk Sea. These indicators suggest that the pronounced C. davisiana production may be attributed to: 1) a supply to mesopelagic depths under intensified stratification of fine organic particles derived from coccolithophorids, bacteria, and detrital materials; and 2) cold, well-ventilated intermediate water formation.  相似文献   
33.
The carrying capacity for bivalve shellfish culture in Saldanha Bay, South Africa, was analysed through the application of the well-tested EcoWin ecological model, in order to simulate key ecosystem variables. The model was set up using: (i) oceanographic and water-quality data collected from Saldanha Bay, and (ii) culture-practice information provided by local shellfish farmers. EcoWin successfully reproduced key ecological processes, simulating an annual mean phytoplankton biomass of 7.5 µg Chl a l–1 and an annual harvested shellfish biomass of about 3 000 tonnes (t) y–1, in good agreement with reported yield. The maximum annual carrying capacity of Small Bay was estimated as 20 000 t live weight (LW) of oysters Crassostrea gigas, or alternatively 5 100 t LW of mussels Mytilus galloprovincialis, and for Big Bay as 100 000 t LW of oysters. Two production scenarios were investigated for Small Bay: a production of 4 000 t LW y–1 of mussels, and the most profitable scenario for oysters of 19 700 t LW y–1. The main conclusions of this work are: (i) in 2015–2016, both Small Bay and Big Bay were below their maximum production capacity; (ii) the current production of shellfish potentially removes 85% of the human nitrogen inputs; (iii) a maximum-production scenario in both Big Bay and Small Bay would result in phytoplankton depletion in the farmed area; (iv) increasing the production intensity in Big Bay would probably impact the existing cultures in Small Bay; and (v) the production in Small Bay could be increased, resulting in higher income for farmers.  相似文献   
34.
Distributions of physical, chemical and biological characteristics were recorded for coastal waters off south-west Ireland during the summers of 1985–1987. A number of thermal fronts were identified from both shipboard measurements and satellite imagery. Upwelling was shown to be an important process in the area and enhanced phytoplankton biomass and productivity were associated with areas of upwelling and the fronts. Phytoplankton species composition, although varying between cruises, was associated with differences in hydrographic features.  相似文献   
35.
On the basis of the data of oceanographic survey in the East China Sea in four seasons during 1997-2000 (23°30'~33°00'N, 118°30'-128°E), the variation of total biomass and diet biomass of zooplankton and their spatial-temporal distribution and relationship with the fishing ground of Engraulis japonicus are approached and analyzed. The results show that the average biomass is 65.32 mg/m3 in four seasons, autumn (86.18 mg/m3) being greater than summer (69.18 mg/m3) greater than spring (55.67 mg/m3) greater than winter (50.33 mg/m3). The average value of diet zooplankton biomass is 40.9 mg/m3. The trends of horizontal distribution both in the total biomass and the diet biomass of zooplankton are similar. The high biomass region (250-500 mg/m3) is very limited, only accounting for 1% of the investigation area. Seasonal variation of the biomass is very remarkable in the west and north parts of East China Sea coastal waters ( 29°30'N,125°E). The horizontal distribution of diet zooplankton depends on the  相似文献   
36.
Abstract. In situ investigations of growth and production in a stand of Posidonia oceanica (L.) DELILE at a depth of 4 m at Ischia (Gulf of Naples) were carried out over two growing seasons. Posidonia starts to grow in August and an average bundle produces ten leaves in increasing time intervals until May. Growth curves for the leaves are given. Maximum leaf standing crop is in May with 1300 g dry weight per m-2, leaf area index at this time reaches 22 m2 m-2. Leaf net productivity is highest in March with 12 g dry weight per m2 per day. Annual leaf production is estimated as 3110 g dry weight per m2, “underground” production as 115 g dry weight per m2. About half the leaf production is exported from the system. Adaptive strategies of the growth and production pattern are discussed.  相似文献   
37.
38.
A series of over 6 000 research-trawl samples collected along the west and south coasts of South Africa between 1987 and 2014 were analysed for the presence and biomass of two parapagurid hermit crabs, Sympagurus dimorphus and Parapagurus bouvieri. The percentage of trawls that landed S. dimorphus and P. bouvieri and the mean caught biomass were higher on the west than on the south coast for both the more-abundant S. dimorphus (30.59 vs 5.81% success and 287.88 vs 31.37 kg km–2, respectively) and for the less-abundant P. bouvieri (13.76 vs 3.58% success and 38.56 vs 16.32 kg km–2, respectively). Very few parapagurids were caught shallower than 150 m; thereafter, the proportion of trawls containing hermit crabs increased, peaking over the depth range 201–250 m for S. dimorphus (54%) and 401–450 m for P. bouvieri (51%), and declining steadily thereafter. On the west coast, the relative caught biomass of S. dimorphus increased significantly from north to south, but there was no apparent latitudinal trend in relative biomass for P. bouvieri. Similarly, there was a significant decline in caught biomass of S. dimorphus with increasing longitude along the south coast, but no apparent trend for P. bouvieri. Although this represents by far the most comprehensive global analyses of distribution and abundance patterns for parapagurids to date, extremely little remains known about the biology and ecological relationships of these species, or indeed of other members of the group.  相似文献   
39.
1985年5-6月对黄河口及其邻近海域的27个站进行了大型底栖动物的首航定量调查。调查海域平均生物量为35.28g/m~2,平均密度为557inds/m~2。棘皮动物占总生物量的47.2%,软体动物占34.2%,多毛类和甲壳类分别占7.5%和6.2%。莱州湾的生物量为调查海域平均生物量的3.5倍。河口输入的营养盐在与高密度低营养盐海水混合过程中,逐渐下沉在莱州湾北部,这是控制该海域高生产力的主要因素。  相似文献   
40.
This paper brings together unpublished historical data sets and published literature to review the role of climatic, oceanographic and ecological processes in the marine ecosystem of the eastern Canadian Archipelago. Physical data include characteristics of the water masses, circulation patterns, sea ice conditions, and climatic records from 1950s onward. Biological data include unpublished data sets on nutrients, primary and secondary production, and sedimentation, which were collected during the 1980–1990s in the eastern Canadian Archipelago. These results show high year-to-year variability in nutrient inventories and ratios, the magnitude of the ice algae and phytoplankton bloom, the timing of ice algae sedimentation in the spring, and the composition of the zooplankton community. The significance of this high interannual variability and its effect on pelagic–benthic coupling processes is discussed in the context of climatic and oceanographic forcing, with emphasis on recent (past decade) Arctic changes. An estimate of total primary production in the Archipelago is also presented, along with published production estimates for other Arctic shelves, showing that the Archipelago may support up to 32% of the total primary production of Arctic shelves. The high year-to-year variability in production and carbon transfer pathways (e.g. pelagic versus benthic) in the Archipelago suggest that the system might be resilient to the increased variability in climatic conditions occurring in the past decade. However, this increased variability combined with directional change in climatic and oceanographic conditions might also modify the existing balance of ecological processes. For example, shifts in the timing of events appear to have already occurred in the past decade, with potential cascading effects throughout the ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号