首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   50篇
  国内免费   47篇
测绘学   18篇
大气科学   145篇
地球物理   88篇
地质学   33篇
海洋学   33篇
天文学   95篇
综合类   7篇
自然地理   16篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   11篇
  2019年   12篇
  2018年   6篇
  2017年   11篇
  2016年   6篇
  2015年   13篇
  2014年   13篇
  2013年   12篇
  2012年   9篇
  2011年   10篇
  2010年   12篇
  2009年   20篇
  2008年   24篇
  2007年   47篇
  2006年   18篇
  2005年   22篇
  2004年   21篇
  2003年   14篇
  2002年   11篇
  2001年   12篇
  2000年   13篇
  1999年   7篇
  1998年   9篇
  1997年   17篇
  1996年   9篇
  1995年   10篇
  1994年   13篇
  1993年   8篇
  1992年   3篇
  1991年   9篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1977年   1篇
  1954年   1篇
排序方式: 共有435条查询结果,搜索用时 15 毫秒
281.
Xiaoning Pan 《Icarus》2004,172(2):521-525
Hydrogen peroxide (H2O2) is one of the minor constituents of the water ice covered surfaces of the jovian satellites Europa, Ganymede, and Callisto. Here we demonstrate that H2O2 production may be initiated by the dissociative electron attachment (DEA) of low-energy electrons (LEEs) to water molecules. Electronic excitation or ionization by electrons also contributes to H2O2 formation at higher electron energies. Finally, we show that hydroperoxyl (HO2) radicals could be formed on the surfaces of icy satellites by LEE impact.  相似文献   
282.
We have found that 0.8 MeV proton irradiation of crystalline H2O-ice results in temperature dependent amorphization. The H2O-ice's phase was determined using the near infrared spectrum from 1.0 μm (10,000 cm−1) to 2.5 μm (4000 cm−1). In crystalline H2O-ice, the 1.65-μm (6061 cm−1) band is strong while it is nearly absent in the amorphous spectrum [Schmitt, B., Quirico, E., Trotta, F., Grundy, W.M., 1998. In: Schmitt, B., de Bergh, C., Festou, M. (Eds.), Solar System Ices. Kluwer Academic, Norwell, MA, 1998, pp. 199-240]. In this experiment, at low temperatures (9, 25, and 40 K), irradiation of crystalline H2O-ice produced the amorphous H2O-ice's spectrum. However, at 50 K, some crystalline absorptions persisted after irradiation and at 70 and 100 K the crystalline spectrum showed only slight changes after irradiation. Our results agree with previous H2O-ice irradiation studies examining the crystalline peaks near 44 and 62 μm by Moore and Hudson [Moore, M.H., Hudson, R.L., 1992. Astrophys. J. 401, 353-360] and near 3.07 μm by Strazzulla et al. [Strazzulla, G., Baratta, G.A., Leto, G., Foti, G., 1992. Europhys. Lett. 18, 517-522] and by Leto and Baratta [Leto, G., Baratta, G.A., 2003. Astron. Astrophys. 397, 7-13]. We present a method of measuring band areas to quantify the phase and radiation dose of icy Solar System surfaces.  相似文献   
283.
“The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” – Victor F. Hess, Nobel Lecture, December 12, 1936High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1], [2], [3]. As demonstrated by the Miller–Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.  相似文献   
284.
285.
We report hard X-ray emission of the non-thermal supernova remnant G337.2+0.1. The source presents centrally filled and diffuse X-ray emission. A spectral study confirms that the column density of the central part of the object is about N H∼5.9(±1.5)×1022 cm−2 and its X-ray spectrum is well represented by a single power-law with a photon index Γ=0.96±0.56. Detailed spectral analysis indicates that the outer region is highly absorbed and quite softer than the inner region. Characteristics already observed in other well-known X-ray plerions. Based on the gathered information, we confirm the SNR nature of G337.2+0.1, and suggest that the central region of the source is a pulsar wind nebula (PWN), originated by an energetic though yet undetected pulsar.  相似文献   
286.
We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.   相似文献   
287.
W.J. Borucki  R.C. Whitten  E. Barth 《Icarus》2006,181(2):527-544
The electrical conductivity and electrical charge on the aerosols in atmosphere of Titan are computed for altitudes between 0 and 400 km. Ionization of methane and nitrogen due to galactic cosmic rays (GCR) is important at night where these ions are converted to ion clusters such as CH+5CH4, C7H+7, C4H+7, and H4C7N+. The ubiquitous aerosols observed also play an important role in determining the charge distribution in the atmosphere. Because polycyclic aromatic hydrocarbons (PAHs) are expected in Titan's atmosphere and have been observed in the laboratory and found to be electrophilic, we consider the formation of negative ions. During the night, the very smallest molecular complexes accept free electrons to form negative ions. This results in a large reduction of the electron abundance both in the region between 150 and 350 km over that predicted when such aerosols are not considered. During the day time, ionization by photoemission from aerosols irradiated by solar ultraviolet (UV) radiation overwhelms the GCR-produced ionization. The presence of hydrocarbon and nitrile minor constituents substantially reduces the UV flux in the wavelength band from the cutoff of CH4 at 155 to 200 nm. These aerosols have such a low ionization potential that the bulk of the solar radiation at longer wavelengths is energetic enough to produce a photoionization rate sufficient to create an ionosphere even without galactic cosmic ray (GCR) bombardment. At altitudes below 60 km, the electron and positive ion abundances are influenced by the three-body recombination of ions and electrons. The addition of this reaction significantly reduces the predicted electron abundance over that previously predicted. Our calculations for the dayside show that the peaks of the charge distributions move to larger values as the altitude increases. This variation is the result of the increased UV flux present at the highest altitudes. Clearly, the situation is quite different than that for the night where the peak of the distribution for a particular size is nearly constant with altitude when negative ions are not present. The presence of very small aerosol particles (embryos) may cause the peak of the distribution to decrease from about 8 negative charges to as little as one negative charge or even zero charge. This dependence on altitude will require models of the aerosol formation to change their algorithms to better represent the effect of charged aerosols as a function of altitude. In particular, the charge state will be much higher than previously predicted and it will not be constant with altitude during the day time. Charging of aerosol particles, whether on the dayside or nightside, has a major influence on both the electron abundance and electrical conductivity. The predicted conductivities are within the measurement range of the HASI PWA instrument over most but not all, of the altitude range sampled.  相似文献   
288.
本文将所建立的重庆雾一维模式简化移植到微机上,主要进行辐射雾的形成时间和浓雾预报。模式在386机上作12小时预报计需机时25分钟。通过对1990年11月~1991年2月24次的个例计算,预报成功率达70%,雾形成时间平均误差为1.7小时。  相似文献   
289.
The Kepler problem including radiation pressure and drag is treated. The equation of the orbit is derived and the scalar and vector integrals of motion are obtained by direct operation on the vector form of the equation of motion.  相似文献   
290.

Direct solar radiation integrated over one year is a function of latitude and time of year, and topographic slope , aspect and shadowing control the local distribution. Recently, several spatial models have been developed which estimate the radiation balance based on digital elevation models, taking into account aspect, slope and shadowing effects. For the periglacial realm, these models are integrated both in models estimating possible occurrence of mountain permafrost and in studies of active layer dynamics. In this article our aim is to assess and discuss sensitivity and validations of the radiation balance model SRAD, in comparison with two other topographic-based radiation models. The study site and field data are from Finse, Southern Norway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号