首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   41篇
  国内免费   49篇
测绘学   1篇
大气科学   152篇
地球物理   62篇
地质学   26篇
海洋学   7篇
天文学   1篇
综合类   1篇
自然地理   3篇
  2024年   1篇
  2022年   6篇
  2021年   8篇
  2020年   3篇
  2019年   6篇
  2018年   13篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   1篇
  2010年   6篇
  2009年   6篇
  2008年   16篇
  2007年   11篇
  2006年   12篇
  2005年   19篇
  2004年   6篇
  2003年   5篇
  2002年   11篇
  2001年   9篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   8篇
  1993年   9篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   13篇
  1978年   12篇
排序方式: 共有253条查询结果,搜索用时 15 毫秒
81.
This study focuses on the determination of optical depths caused by ozone and trace gases absorption in the Chappuis band, 500–700 nm, and the contribution to the Total Minus Rayleigh Optical Depth (TMROD). The optical depths were derived using the transmission functions implemented in the SMARTS parametric model, while the Total Optical Depths (TODs) were derived by solar extinction measurements obtained in Athens during May 1995. From the data analysis it is obvious that both the ozone and trace gases contribute significantly to TMROD in the Chappuis band. More specifically, the trace gases contributions are higher for air with high pollution levels, while ozone's contribution can be significant under clear-sky conditions. Therefore, the correction in TMROD due to ozone and trace gases optical depths is necessary for an accurate determination of the Aerosol Optical Depth (AOD) in the Chappuis band. The optical depth of ozone is generally removed during the process of the AOD retrievals, since the significance of its absorption in the Chappuis band is well understood. Nevertheless, the optical depth of the trace gases (mainly NO2) is not always taken into account in the AOD retrievals, though its contribution can be significant in urban polluted atmospheres. In this respect, the present study attempts to quantify the ozone and trace gases contributions in an urban environment and to provide some new functions that help estimate the contribution of ozone to the TMROD in the Chappuis band.  相似文献   
82.
F. Cousin  P. Tulet  R. Rosset   《Atmospheric Research》2005,74(1-4):117-137
Escompte, a European programme which took place in the Marseille region in June–July 2001, has been designed as an exhaustive database to be used for the development and validation of air pollution models. The air quality Mesoscale NonHydrostatic Chemistry model (Meso-NH-C) is used to simulate 2 days of an Intensive Observation Period (IOP) documented during the Escompte campaign, June 23 and 24, 2001. We first study the synoptic and local meteorological situation on June 23 and 24, using surface and aircraft measurements. Then, we focus on the pollution episode of June 24. This study emphasizes the deep impact of synoptic and local dynamics on observed ozone concentrations. It is shown that ozone levels are due both to regional and local factors, with highlights of the importance of ozone layering. More generally this confirms, even in an otherwise predominant local sea-breeze regime, the need to consider larger scale regional pollutant transport.  相似文献   
83.
The new MOdèle de Chimie Atmosphérique à Grande Echelle (MOCAGE) three-dimensional multiscale chemistry and transport model (CTM) has been applied to study heavy pollution episodes observed during the ESCOMPTE experiment. The model considers the troposphere and lower stratosphere, and allows the possibility of zooming from the planetary scale down to the regional scale over limited area subdomains. Like this, it generates its own time-dependent chemical boundary conditions in the vertical and in the horizontal. This paper focuses on the evaluation and quantification of uncertainties related to chemical and transport modelling during two intensive observing periods, IOP2 and IOP4 (June 20–26 and July 10–14, 2001, respectively). Simulations are compared to the database of four-dimensional observations, which includes ground-based sites and aircraft measurements, radiosoundings, and quasi-continuous measurements of ozone by LIDARs. Thereby, the observed and modelled day-to-day variabilities in air composition both at the surface and in the vertical have been assessed. Then, three sensitivity studies are conducted concerning boundary conditions, accuracy of the emission dataset, and representation of chemistry. Firstly, to go further in the analysis of chemical boundary conditions, results from the standard grid nesting set-up and altered configurations, relying on climatologies, are compared. Along with other recent studies, this work advocates the systematic coupling of limited-area models with global CTMs, even for regional air quality studies or forecasts. Next, we evaluate the benefits of using the detailed high-resolution emissions inventory of ESCOMPTE: improvements are noticeable both on ozone reactivity and on the concentrations of various species of the ozone photochemical cycle especially primary ones. Finally, we provide some insights on the comparison of two simulations differing only by the parameterisation of chemistry and using two state-of-the-art chemical schemes for regional photochemical modelling. Regional air quality modelling is found to be highly sensitive to the emission inventory dataset and also to the vertical and horizontal boundary conditions and detailed representation of chemistry. Interestingly enough, they infer the same range of errors compared to total model errors.  相似文献   
84.
利用NCEP/NCAR FNL客观分析资料和欧洲中期天气预报中心(ECMWF)的Interim再分析资料以及臭氧监测仪(OMI)的臭氧廓线资料,结合区域大气化学模式WRF-Chem对中国春季一次高空冷槽过境引起的对流层顶折卷过程(2012年3月19—21日)进行了分析,并从平流、湍流混合、对流输送等几个方面诊断分析了平流层臭氧向对流层的传输特征和细节。结果表明,发生于青藏高原西北侧的对流层顶折卷事件,其所在位置处于热带对流层顶向中纬度对流层顶的过渡区,由于陡峭的对流层顶南北梯度,在该区域发生的平流层-对流层物质交换(STE)比对流层顶东西方向折卷引起的物质交换要强烈和持久,跨越等熵面的物质交换和湍流混合对平流层-对流层物质交换有很大的贡献。大地形对平流层-对流层物质交换过程有显著的影响,且具有明显的日变化特征。早晚时段,大地形导致的爬坡上升气流显著,抑制了平流层空气与对流层空气的混合交换。午后,大地形热力作用增强,受背风坡局地环流的影响,靠近山顶处湍流混合作用对上对流层臭氧浓度升高的贡献显著增强,且地形越高,这种效应越显著。地形的湍流混合作用在2.5 km高度以上凸显,此高度之上地形平均高度每升高100 m,湍流混合的贡献增加约1%。  相似文献   
85.
《Comptes Rendus Geoscience》2018,350(7):354-367
In the 1980s, ground-based monitoring of the ozone layer played a key role in the discovery of the Antarctic Ozone Hole as well as in the first documentation of significant winter and spring long-term downward trends in the populated mid-latitude regions. The article summarizes the close-to-hundred-year-long history of ground-based measurements of stratospheric ozone, and more recent observations of constituents that influence its equilibrium. Ozone observations began long before the recognition of the impact of increasing emissions of manmade ozone-depleting substances on ozone and therefore on UV levels, human health, ecosystems and the Earth climate. The historical ozone observations prior to 1980s are used as a reference for the assessments of the state of the ozone layer linked to the enforcement of the Montreal Protocol. In this paper, we describe the worldwide monitoring networks and their ozone observations used to determine long-term trends with an accuracy of a few percent per decade. Since 1989, the ground-based monitoring activities have provided support for the amendments of the Montreal Protocol (MP). They include monitoring of (a) the ozone total column and the vertical distribution at global scale, (b) the ozone-depleting substances (ODS) related to the MP such as chlorofluorocarbons (CFCs), and their decomposition products in the stratosphere, and (c) the atmospheric species playing a role in ozone depletion, e.g., nitrogen oxides, water vapor, aerosols, polar stratospheric clouds. We highlight important accomplishments in the atmospheric monitoring performed by the Global Atmosphere Watch program (GAW) run under the auspices of the World Meteorological Organization (WMO) and by the Network for the Detection of Atmospheric Composition Change (NDACC). We also address the complementary roles of ground-based networks and satellite instruments. High-quality ground-based measurements have been used to evaluate ozone variabilities and long-term trends, assess chemistry climate models, and check the long-term stability of satellite data, including more recently the merged satellite time-series developed for the detection of ozone recovery at global scale, which might be further modified by climate change.  相似文献   
86.
《Comptes Rendus Geoscience》2018,350(7):376-383
Although catalytic chemistry involving ozone-depleting substances (ODSs) is currently a primary driver impacting the abundance of stratospheric ozone, water vapor and aerosols are constituents that also affect stratospheric ozone. Variability in both water vapor and aerosols can induce variability in ozone, and although small relative to that due to trends in ODSs, in the future may become a much more important source of ozone variability.  相似文献   
87.
《Atmósfera》2014,27(3):261-271
Air pollution is the main environmental issue in Mexico City, where ozone is one of the most damaging pollutants for human health. In this work we present a retrospective health impact assessment (HIA) study split up by age groups for evaluating the benefits of ozone regulatory strategies from 1991 to 2011 in Mexico City. Since people move from one place to another during the day, which may affect their potential exposure to pollutants, we consider time-dependant spatial population distributions during the day. Ozone data is made up of observations taken with hourly frequency from January 1, 1991 to December 31, 2011, at approximately 22 stations of the monitoring network of Mexico City. Interpolated values for unknown locations are also taken into account in the HIA. The Cressman objective analysis method is applied for interpolating the observed ozone concentrations from monitoring stations to grids of convenient resolution. We demonstrate that different age groups present different spatial patterns of exposure, being the working-age people (between 18 and 64 years) the most benefited. We also confirm the hypothesis that, in general, people move to less polluted regions during the day.  相似文献   
88.
本文利用1957年9月到2002年8月,共540个月的ERA-40的经向风和臭氧质量混合比月平均资料,分析研究了平均经圈环流(MMC)和Hadley环流强弱特征变化及其与臭氧变化的关系.分析指出:(1)平均经圈环流与臭氧分布在垂直方向上有很好的对应和相关关系,平均经圈环流是形成臭氧水平、垂直的气候平均态分布,季节变化,年代际变化的重要因素;(2)垂直方向上北半球臭氧浓度的变化比南半球的变化更明显;(3)典型相关分析表明平均经圈环流与臭氧浓度变化在不同的高度和纬度上有不同的相关关系,臭氧与Hadley和Ferrel环流存在密切的相关关系,特别是Hadley环流,这表明Hadley环流在全球大气臭氧的变化中起重要作用.  相似文献   
89.
The oxidation of organophosphorus pesticides (OPPs), such as malathion and parathion, in aqueous solution was studied using conventional ozonation (O3), photolytic ozonation (O3/UV, O3/UV/H2O2), and heterogeneous catalytic ozonation (O3/TiO2/UV) processes. Experiments were performed in batch mode at laboratory scale and processes were compared in terms of disappearance kinetics. The best results of pesticide mineralization were obtained when TiO2 particles in combination with ozone (O3) and UV photolysis (λ = 254 nm) were applied. Decomposition of 99% of parent compounds were achieved in 10 min and oxon derivatives were completely removed in 30 min. The initial reaction rate increases linearly with increasing catalyst amount. Toxicity measurements of the treated solutions were carried out in order to evaluate the efficiency of the treatment methods. No detoxification was achieved for O3 and O3/UV applications. Heterogeneous photocatalytic ozonation was shown to be feasible for achieving complete decomposition of OPPs and their oxon intermediates.  相似文献   
90.
The oxidation of organic matter from wastewater using ozone, ultraviolet radiation and ozone/UV oxidation was evaluated in a pilot plant, applying a continuous effluent arising from the Autonomous Metropolitan University wastewater treatment plant. The oxidation was measured as the efficiency to remove organic load, measured as chemical oxygen demand. The use of ozone and UV was evaluated separately and in combination through a continuous process. Three different ozone doses (0.6–1.2 mg O3/L) and three different UV radiation fluencies (6.7–20.12 mJ/cm2) were assessed. A synergistic effect of the combined process ozone/UV was demonstrated, and a maximal chemical oxygen demand reduction was achieved both processes. Due to residence times used (less than 1 min), 36% of chemical oxygen demand reduction was obtained when ozone treatment was evaluate separately and only 9% using ultraviolet radiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号