全文获取类型
收费全文 | 448篇 |
免费 | 66篇 |
国内免费 | 70篇 |
专业分类
测绘学 | 65篇 |
大气科学 | 77篇 |
地球物理 | 142篇 |
地质学 | 132篇 |
海洋学 | 92篇 |
天文学 | 21篇 |
综合类 | 13篇 |
自然地理 | 42篇 |
出版年
2024年 | 2篇 |
2023年 | 5篇 |
2022年 | 3篇 |
2021年 | 7篇 |
2020年 | 8篇 |
2019年 | 17篇 |
2018年 | 8篇 |
2017年 | 9篇 |
2016年 | 9篇 |
2015年 | 16篇 |
2014年 | 20篇 |
2013年 | 25篇 |
2012年 | 28篇 |
2011年 | 28篇 |
2010年 | 25篇 |
2009年 | 30篇 |
2008年 | 33篇 |
2007年 | 38篇 |
2006年 | 28篇 |
2005年 | 26篇 |
2004年 | 28篇 |
2003年 | 19篇 |
2002年 | 15篇 |
2001年 | 10篇 |
2000年 | 20篇 |
1999年 | 10篇 |
1998年 | 15篇 |
1997年 | 13篇 |
1996年 | 7篇 |
1995年 | 10篇 |
1994年 | 8篇 |
1993年 | 11篇 |
1992年 | 10篇 |
1991年 | 7篇 |
1990年 | 6篇 |
1989年 | 7篇 |
1988年 | 3篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1954年 | 1篇 |
排序方式: 共有584条查询结果,搜索用时 15 毫秒
31.
32.
Las Vegas Valley has had a long history of groundwater development and subsequent surface deformation. InSAR interferograms have revealed detailed and complex spatial patterns of subsidence in the Las Vegas Valley area that do not coincide with major pumping regions. This research represents the first effort to use high spatial and temporal resolution subsidence observations from InSAR and hydraulic head data to inversely calibrate transmissivities (T), elastic and inelastic skeletal storage coefficients (Ske and Skv) of the developed‐zone aquifer and conductance (CR) of the basin‐fill faults for the entire Las Vegas basin. The results indicate that the subsidence observations from InSAR are extremely beneficial for accurately quantifying hydraulic parameters, and the model calibration results are far more accurate than when using only groundwater levels as observations, and just a limited number of subsidence observations. The discrepancy between distributions of pumping and greatest levels of subsidence is found to be attributed to spatial variations in clay thickness. The Eglington fault separates thicker interbeds to the northwest from thinner interbeds to the southeast and the fault may act as a groundwater‐flow barrier and/or subsidence boundary, although the influence of the groundwater barrier to this area is found to be insignificant. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
33.
地球物理勘探中,地下应力的估测是非常重要的.本文利用应力诱导的弱各向异性的各向异性参数, 借助已有的具有水平对称轴横向各向同性介质顾及高阶小量的横波反射系数近似公式,针对下介质为各向同性受单轴应力作用情况随应力的增加求取应力精度降低的问题,从横波反射系数近似公式的推导出发,联合SH波与SV 波反射系数给出新的改进的单轴应力与横波反射系数的直观表达式;计算并对比了受单轴应力作用的各向同性介质的横波近似和严格的反射系数,并利用理论得到的横波反射系数对应力进行了估值.结果表明,利用改进后横波反射系数与应力的直观表达式, 当应力增加时,应力估值精度有了明显的改善,这为利用横波反射数据直观估测应力提供理论依据. 相似文献
34.
加速度反应谱平台值表征地震动的强度特性,场地条件是影响反应谱平台值的一个重要因素.本文选取6组同一地区断层距相近而场地条件不同的强震记录,对其标准化的加速度反应谱形状及平台值进行分析;并以汶川地震中173个有详细地勘场地上的强震记录为基础,统计分析了不同场地类别和断层距区间内的加速度反应谱平台值.本文研究结果显示,场地条件对加速度反应谱平台值有较大影响,随着场地变软,加速度反应谱平台值增大.本文定义了场地影响系数,计算并给出了不同地面峰值加速度对应的场地影响系数. 相似文献
35.
Transverse isotropy with a vertical axis of symmetry is a common form of anisotropy in sedimentary basins, and it has a significant influence on the seismic amplitude variation with offset. Although exact solutions and approximations of the PP-wave reflection coefficient for the transversely isotropic media with vertical axis of symmetry have been explicitly studied, it is difficult to apply these equations to amplitude inversion, because more than three parameters need to be estimated, and such an inverse problem is highly ill-posed. In this paper, we propose a seismic amplitude inversion method for the transversely isotropic media with a vertical axis of symmetry based on a modified approximation of the reflection coefficient. This new approximation consists of only three model parameters: attribute A, the impedance (vertical phase velocity multiplied by bulk density); attribute B, shear modulus proportional to an anellipticity parameter (Thomsen's parameter ε−δ); and attribute C, the approximate horizontal P-wave phase velocity, which can be well estimated by using a Bayesian-framework-based inversion method. Using numerical tests we show that the derived approximation has similar accuracy to the existing linear approximation and much higher accuracy than isotropic approximations, especially at large angles of incidence and for strong anisotropy. The new inversion method is validated by using both synthetic data and field seismic data. We show that the inverted attributes are robust for shale-gas reservoir characterization: the shale formation can be discriminated from surrounding formations by using the crossplot of the attributes A and C, and then the gas-bearing shale can be identified through the combination of the attributes A and B. We then propose a rock-physics-based method and a stepwise-inversion-based method to estimate the P-wave anisotropy parameter (Thomsen's parameter ε). The latter is more suitable when subsurface media are strongly heterogeneous. The stepwise inversion produces a stable and accurate Thomsen's parameter ε, which is proved by using both synthetic and field data. 相似文献
36.
Surface soil moisture (SSM) is a critical variable for understanding water and energy flux between the atmosphere and the Earth's surface. An easy to apply algorithm for deriving SSM time series that primarily uses temporal parameters derived from simulated and in situ datasets has recently been reported. This algorithm must be assessed for different biophysical and atmospheric conditions by using actual geostationary satellite images. In this study, two currently available coarse‐scale SSM datasets (microwave and reanalysis product) and aggregated in situ SSM measurements were implemented to calibrate the time‐invariable coefficients of the SSM retrieval algorithm for conditions in which conventional observations are rare. These coefficients were subsequently used to obtain SSM time series directly from Meteosat Second Generation (MSG) images over the study area of a well‐organized soil moisture network named REMEDHUS in Spain. The results show a high degree of consistency between the estimated and actual SSM time series values when using the three SSM dataset‐calibrated time‐invariable coefficients to retrieve SSM, with coefficients of determination (R2) varying from 0.304 to 0.534 and root mean square errors ranging from 0.020 m3/m3 to 0.029 m3/m3. Further evaluation with different land use types results in acceptable debiased root mean square errors between 0.021 m3/m3 and 0.048 m3/m3 when comparing the estimated MSG pixel‐scale SSM with in situ measurements. These results indicate that the investigated method is practical for deriving time‐invariable coefficients when using publicly accessed coarse‐scale SSM datasets, which is beneficial for generating continuous SSM dataset at the MSG pixel scale. 相似文献
37.
Heat transfer coefficients used in numerical simulations of volcanic eruptions are typically borrowed from industrial settings where the coefficients are well determined for non-permeable, machined (spherical) materials. Volcanic clasts, in contrast, are permeable and have irregular shapes. We performed a series of laboratory experiments to determine heat transfer coefficients for natural volcanic particles. We measured the surface and interior temperatures during cooling at wind speeds ranging from 0 to 10 m/s. We also measured the permeability and density of the particles. We find that the permeability of the particles has little effect on clast cooling. In the absence of any wind, heat loss occurs by free convection, and we find no relationship between the heat transfer coefficient and particle density. However, for non-zero Reynolds numbers (finite wind speed), the heat transfer coefficient decreases with increasing porosity. We obtain a correlation for the dimensionless heat loss, or Nusselt number, of the form Nu = 2 + aRe1/2Pr1/3 where a is a density dependent coefficient given by a = 0.00022ρ + 0.31, with ρ in kg/m3, and Re and Pr are the Reynolds number and Prandtl number, respectively. Compared with non-porous particles, heat transfer coefficients for natural pumice clasts are reduced by a factor of 2–3 for particles with similar Re. Numerical simulations show that this leads to an increase in depositional temperature by 50–90 °C. 相似文献
38.
J. Klokoník J. Kostelecký C.A. Wagner P. Schwintzer Ch. Förste R. Scharroo 《Journal of Geodesy》2005,78(7-8):405-417
Since the advent of CHAMP, the first in a series of low-altitude satellites being almost continuously and precisely tracked by GPS, a new generation of long-wavelength gravitational geopotential models can be derived. The accuracy evaluation of these models depends to a large extent on the comparison with external data of comparable quality. Here, two CHAMP-derived models, EIGEN-1S and EIGEN-2, are tested with independent long-term-averaged single satellite crossover (SSC) sea heights from three altimetric satellites (ERS-1, ERS-2 and Geosat). The analyses show that long-term averages of crossover residuals still are powerful data to test CHAMP gravity field models. The new models are tested in the spatial domain with the aid of ERS-1/-2 and Geosat SSCs, and in the spectral domain with latitude-lumped coefficient (LLC) corrections derived from the SSCs. The LLC corrections allow a representation of the satellite-orbit-specific error spectra per order of the models spherical harmonic coefficients. These observed LLC corrections are compared to the LLC projections from the models variance–covariance matrix. The excessively large LLC errors at order 2 found in the case of EIGEN-2 with the ERS data are discussed. The degree-dependent scaling factors for the variance-covariance matrices of EIGEN-1S and –2, applied to obtain more realistic error estimates of the solved-for coefficients, are compatible with the results found here. 相似文献
39.
根据Biot波动理论,采用复变函数与多级坐标法,求解了P波作用下饱和土体中地下输流管道的波动散射方程,分析了管道中流体介质性质、入射波角度及管道埋深等对地下输流管道周边动应力集中系数及孔压集中系数分布的影响。计算结果表明:在低频弹性波入射时,管道周边动应力集中系数及孔压集中系数分布相对均匀,而随入射频率的增加,其分布变得复杂化,但其峰值有所减小;中低频波入射作用下,管道内为水、石油介质时,动应力集中系数和孔压集中系数较空气介质时小,而在高频波作用时情况相反;对于管道内流体介质为水时,随着入射角度的变化,应力集中分布也沿一定角度的方向发生转动,入射波自管道下方垂直入射时,管道周边动应力集中系数峰值相对较大;随埋深的增加,动应力集中系数和孔压集中系数均呈震荡减小的趋势。 相似文献
40.