首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1921篇
  免费   199篇
  国内免费   133篇
测绘学   351篇
大气科学   180篇
地球物理   465篇
地质学   299篇
海洋学   66篇
天文学   25篇
综合类   139篇
自然地理   728篇
  2024年   8篇
  2023年   26篇
  2022年   95篇
  2021年   130篇
  2020年   120篇
  2019年   95篇
  2018年   76篇
  2017年   96篇
  2016年   85篇
  2015年   71篇
  2014年   121篇
  2013年   162篇
  2012年   76篇
  2011年   104篇
  2010年   56篇
  2009年   86篇
  2008年   86篇
  2007年   84篇
  2006年   96篇
  2005年   82篇
  2004年   65篇
  2003年   77篇
  2002年   47篇
  2001年   61篇
  2000年   43篇
  1999年   32篇
  1998年   21篇
  1997年   34篇
  1996年   23篇
  1995年   19篇
  1994年   17篇
  1993年   14篇
  1992年   10篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   9篇
  1986年   3篇
  1984年   4篇
  1977年   1篇
  1954年   1篇
排序方式: 共有2253条查询结果,搜索用时 15 毫秒
951.
Our aim was to quantify the effects of forest plantation and management (clear cut or 30% partial harvest) in relation to pasture, on catchment discharge in southeast Rio Grande do Sul state, Brazil. A paired‐catchment approach was implemented in two regions (Eldorado do Sul and São Gabriel municipalities) where discharge was measured for 4 years at three catchments in each region, two of which were predominantly eucalypt plantation (mainly Eucalyptus saligna, rotation of approximately 7–9 years) with native forest and grass in streamside zones. The third catchment was covered with grazed pasture. Weather, soils, canopy interception, groundwater level, tree growth, and leaf area index were also measured. The 3‐PG process‐based forest productivity model was adapted to predict spatial daily plantation and pasture water balance including precipitation interception, soil evaporation, transpiration, soil moisture, drainage, discharge, and monthly plantation growth. The TOPMODEL framework was used to simulate water pools and fluxes in the catchments. Discharge was higher under pasture than pre‐harvesting plantation and increased for 1–2 years after complete plantation harvest; this change was less pronounced in the catchments under partial harvest. The ratio of discharge to precipitation before harvesting varied from 7% to 13% in the eucalypt catchments and 28% to 29% under pasture. The ratio increases to 23–24% after total harvest, and to 17% after partial harvesting. The ratio under pasture also increases during this period (to 32–44%) owing to increased precipitation. The baseflow, in relation to total discharge, varied from 28% to 62% under Eucalyptus and from 38% to 43% in the pasture catchments. Hence, eucalypt plantations in these regions can be expected to influence discharge regimes when compared with pasture land use, and modelling suggests that partial harvesting would moderate the magnitude of discharge variation compared with a full catchment plantation harvesting. The model efficiency coefficient (Nash–Sutcliffe model efficiency coefficient) varied from 0.665 to 0.799 for the total period of the study. Simulation of alternative harvesting scenarios suggested that at least 20% of the catchment planted area must be harvested to increase discharge. This model could be a useful practical tool in various plantation forestry contexts around the world. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
952.
953.
The Chinese government ratified the Paris Climate Agreement in 2016.Accordingly,China aims to reduce carbon dioxide emissions per unit of gross domestic product(carbon intensity)to 60%–65%of 2005 levels by 2030.However,since numerous factors influence carbon intensity in China,it is critical to assess their relative importance to determine the most important factors.As traditional methods are inadequate for identifying key factors from a range of factors acting in concert,machine learning was applied in this study.Specifically,random forest algorithm,which is based on decision tree theory,was employed because it is insensitive to multicollinearity,is robust to missing and unbalanced data,and provides reasonable predictive results.We identified the key factors affecting carbon intensity in China using random forest algorithm and analyzed the evolution in the key factors from 1980 to 2017.The dominant factors affecting carbon intensity in China from 1980 to 1991 included the scale and proportion of energy-intensive industry,the proportion of fossil fuel-based energy,and technological progress.The Chinese economy developed rapidly between 1992 and 2007;during this time,the effects of the proportion of service industry,price of fossil fuel,and traditional residential consumption on carbon intensity increased.Subsequently,the Chinese economy entered a period of structural adjustment after the 2008 global financial crisis;during this period,reductions in emissions and the availability of new energy types began to have effects on carbon intensity,and the importance of residential consumption increased.The results suggest that optimizing the energy and industrial structures,promoting technological advancement,increasing green consumption,and reducing emissions are keys to decreasing carbon intensity within China in the future.These approaches will help achieve the goal of reducing carbon intensity to 60%–65%of the 2005 level by 2030.  相似文献   
954.
Forest harvesting activities, if not carefully carried out, can disturb the forest soils and can cause significant suspended solid concentration increases in receiving water. This study examined how harvesting, following forestry guidelines, influenced suspended solid concentrations and loads in the receiving water of a blanket peat salmonid catchment. The study site comprised of two forest coupes of 34‐year‐old conifers drained by a first‐order stream. The upper coupe was not felled and acted as a baseline ‘control’ catchment; the downstream coupe was completely harvested in summer 2005 and served as the ‘experimental’ catchment. Good management practices such as the proper use of brash mats and harvesting only in dry weather were implemented to minimize soil surface disturbance and streambank erosion. Stream flow and suspended solid measurements at an upstream station (US) and a downstream station (DS) in the study stream commenced over a year before felling took place. The suspended solid concentrations, yields and release patterns at US and DS were compared before and after harvesting. These showed that post‐guideline harvesting of upland blanket peat forest did not significantly increase the suspended solid concentrations in the receiving water and the aquatic zone need not be adversely affected by soil releases from sites without a buffer strip. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
955.
Both evergreen and deciduous forests (Efs and Dfs) are widely distributed under similar climatic conditions in tropical monsoon regions. To clarify the hydraulic properties of the soil matrix in different forest types and their effects on soil water storage capacity, the soil pore characteristics (SPC) were investigated in Ef and Df stands in three provinces in Cambodia. Soils in the Ef group were characterized in common by large amounts of coarse pores with moderate pore size distribution and the absence of an extremely low Ks at shallow depths, compared to Df group soils. The mean available water capacity of the soil matrix (AWCsm) for all horizons of the Ef and Df group soils was 0·107 and 0·146 m3 m?3, respectively. The mean coarse pore volume of the soil matrix (CPVsm) in the Ef and Df groups was 0·231 and 0·115 m3 m?3, respectively. A water flow simulation using a lognormal distribution model for rain events in the early dry season indicated that variation in SPC resulted in a larger increase in available soil water in Ef soils than in Df soils. Further study on deeper soil layers in Ef and each soil type in Df is necessary for the deeper understanding of the environmental conditions and the hydrological modelling of each forest ecosystem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
956.
Precipitation intercepted by forests plays a major role in more than one‐fourth of the global land area's hydrologic cycle. Direct in situ measurement of intercepted precipitation is challenging, and thus, it is typically indirectly estimated through comparing precipitation under forest cover and in the open. We discuss/compare measurement methods for forest precipitation interception beyond classical budgeting and then recommend future directions for improving water storage estimation. Comparison of techniques shows that methods submerging tree components produce the largest water storage capacity values. Whole‐tree lysimeters have been used with great success at quantifying water storage for the integrated system yet are unable to separate trunk versus canopy storage. Remote sensing, particularly signal attenuation, may permit this separation. Mechanical displacement methods show great promise and variety of techniques: pulley/spring system, branch strain sensors, trunk compression sensors and photography. Relating wind sway to water storage also shows great promise with negligible environmental disruption yet is currently at the proof‐of‐concept stage. Suggested future directions focus on development of common features regarding all discussed methods: (i) measurement uncertainties or processes beyond interception influencing the observed signal, (ii) scaling approaches to move from single tree components to the single‐tree and forest scales and (iii) temporal scaling to estimate the relevance of single‐interception components over longer timescales. Through addressing these research needs, we hope the scientific community can develop an ‘integrated’ monitoring plan incorporating multiple measurement techniques to characterize forest‐scale water storage dynamics while simultaneously investigating underlying (smaller‐scale) components driving those dynamics across the spectrum of precipitation and forest conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
957.
958.
The cyclic behaviour of slender cantilever columns in full-scale models of precast industrial buildings, designed by Eurocode 8, was studied experimentally and analytically. The shear span ratio of the columns was 12.5, which is more than allowed by Eurocode 8 for columns in frame structures (10). High deformability and a large deformation capacity (8%~drift) of the columns was observed. A lumped plasticity model was used in the analysis. In the paper the observed behaviour of the models has been compared with the predicted behaviour obtained by several empirically based models and procedures. It was observed that these models, which were developed for much lower shear span ratios (2–6), were not applicable for the analyzed very slender columns without appropriate additional considerations and modifications. In the case of such columns the yield drift is dominated by the flexural mode (it is practically proportional to the height of the column) and the ultimate drift under cyclic loading conditions is only slightly dependent on the shear span (indicating that the ratio of the equivalent length of the plastic hinge to the height of the column decreases with the increasing shear span). An appropriately modified lumped plasticity model incorporating in-cycle and repeated-cycle strength deterioration was chosen for future use in performance-based design and seismic risk studies.  相似文献   
959.
阎传海  徐科峰 《地理科学》2005,25(1):94-101
徐连过渡带位于江苏省北部,地当南北要冲,为一典型的生态过渡带;低山丘陵生态环境遭到严重破坏,生态系统的恢复与重建任重道远。基于10个样地4650 m2的野外调查资料,建立了徐连过渡带低山丘陵森林植被分类系统,包括2个植被型组、3个植被型、3个植被亚型、6个群系组、12个群系。根据建群种与光照强度的关系,分析了12个森林植被群系间的演替关系,构建了徐连过渡带低山丘陵森林植被次生演替模式。以次生演替模式为指导,论述了徐连过渡带低山丘陵生态恢复重建策略。  相似文献   
960.
森林生态系统健康评价指标在中国的应用   总被引:1,自引:0,他引:1  
1IntroductionDuring recent two decades, the idea of "health" as an appropriate paradigm to assess the condition of ecosystems, is watchword of contemporary ecosystem management. The phrase "forest ecosystem health" has been used with increasing frequency in the context of forestry and natural resource management. Many scientists give the definitions from socio-economic and ecological perspectives (Rapport, 1992; USDA Forest Service, 1993; O'Laughlin, 1996; Allen, 2001). Forest health is a …  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号