首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   14篇
  国内免费   14篇
测绘学   11篇
大气科学   12篇
地球物理   40篇
地质学   26篇
海洋学   4篇
天文学   1篇
综合类   1篇
自然地理   7篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   7篇
  2013年   5篇
  2012年   1篇
  2011年   4篇
  2010年   6篇
  2009年   8篇
  2008年   13篇
  2007年   4篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1993年   1篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
71.
Genetic algorithms have been shown to be powerful tools for solving a wide variety of water resources optimization problems. Applying these approaches to complex, large-scale water resources applications can be difficult due to computational limitations, especially when a numerical model is needed to evaluate different solutions. This problem is particularly acute for solving field-scale groundwater remediation design problems, where fine spatial grids are often needed for accuracy. Finer grids usually improve the accuracy of the solutions, but they are also computationally expensive. In this paper we present multiscale island injection genetic algorithms (IIGAs), in which the optimization algorithms have different multiscale populations working on different islands (groups of processors) and periodically exchanging information. This new approach is tested using a field-scale pump-and-treat design problem at the Umatilla Army Depot in Oregon, USA. The performance of several variations of this approach is compared with the results of a simple genetic algorithm. The new approach found the same solution as much as 81% faster than the simple genetic algorithm and 9–53% faster than other previously formulated multiscale strategies. These findings indicate substantial promise for multiscale IIGA approaches to improve solution of complex water resources applications at the field scale.  相似文献   
72.
This paper presents a method to despeckle Synthetic Aperture Radar (SAR) image, and then extract geographical features in it. In this research work, speckle is reduced by multiscale analysis in wavelet domain. In terms of geographical feature preservation the result shows that the method is better compared to spatial domain filters, such as Lee, Kuan, Frost, Ehfrost, Median, Gamma filters. The geographical features such as roads, airport runways, rivers and other ribbon-like shape structures are detected by the new wavelet-based method as proposed by Yuan Yan Tang. Experimental results show that the proposed method extracts geographical features of different width as well as different gray levels.  相似文献   
73.
In this paper, we review the classical nonoverlapping domain decomposition (NODD) preconditioners, together with the newly developed multiscale control volume (MSCV) method. By comparing the formulations, we observe that the MSCV method is a special case of a NODD preconditioner. We go on to suggest how the more general framework of NODD can be applied in the multiscale context to obtain improved multiscale estimates.  相似文献   
74.
We review and perform comparison studies for three recent multiscale methods for solving elliptic problems in porous media flow; the multiscale mixed finite-element method, the numerical subgrid upscaling method, and the multiscale finite-volume method. These methods are based on a hierarchical strategy, where the global flow equations are solved on a coarsened mesh only. However, for each method, the discrete formulation of the partial differential equations on the coarse mesh is designed in a particular fashion to account for the impact of heterogeneous subgrid structures of the porous medium. The three multiscale methods produce solutions that are mass conservative on the underlying fine mesh. The methods may therefore be viewed as efficient, approximate fine-scale solvers, i.e., as an inexpensive alternative to solving the elliptic problem on the fine mesh. In addition, the methods may be utilized as an alternative to upscaling, as they generate mass-conservative solutions on the coarse mesh. We therefore choose to also compare the multiscale methods with a state-of-the-art upscaling method – the adaptive local–global upscaling method, which may be viewed as a multiscale method when coupled with a mass-conservative downscaling procedure. We investigate the properties of all four methods through a series of numerical experiments designed to reveal differences with regard to accuracy and robustness. The numerical experiments reveal particular problems with some of the methods, and these will be discussed in detail along with possible solutions. Next, we comment on implementational aspects and perform a simple analysis and comparison of the computational costs associated with each of the methods. Finally, we apply the three multiscale methods to a dynamic two-phase flow case and demonstrate that high efficiency and accurate results can be obtained when the subgrid computations are made part of a preprocessing step and not updated, or updated infrequently, throughout the simulation. The research is funded by the Research Council of Norway under grant nos. 152732 and 158908.  相似文献   
75.
Historical haze episodes(2013–16) in Guangzhou were examined and classified according to synoptic weather systems.Four types of weather systems were found to be unfavorable, among which "foreside of a cold front"(FC) and "sea high pressure"(SP) were the most frequent( 75% of the total). Targeted case studies were conducted based on an FC-affected event and an SP-affected event with the aim of understanding the characteristics of the contributions of source regions to fine particulate matter(PM_(2.5)) in Guangzhou. Four kinds of contributions—namely, emissions outside Guangdong Province(super-region), emissions from the Pearl River Delta region(PRD region), emissions from Guangzhou–Foshan–Shenzhen(GFS region), and emissions from Guangzhou(local)—were investigated using the Weather Research and Forecasting–Community Multiscale Air Quality model. The results showed that the source region contribution differed with different weather systems. SP was a stagnant weather condition, and the source region contribution ratio showed that the local region was a major contributor(37%), while the PRD region, GFS region and the super-region only contributed 8%, 2.8% and 7%, respectively, to PM_(2.5) concentrations. By contrast, FC favored regional transport. The super-region became noticeable,contributing 34.8%, while the local region decreased to 12%. A simple method was proposed to quantify the relative impact of meteorology and emissions. Meteorology had a 35% impact, compared with an impact of-18% for emissions, when comparing the FC-affected event with that of the SP. The results from this study can provide guidance to policymakers for the implementation of effective control strategies.  相似文献   
76.
东亚夏季风强度的变化与中国雨带和旱涝分布密切相关。为了做好东亚夏季风强度的短期气候预测,采用小波分析、Lanczos滤波器、交叉检验等方法,研究了东亚夏季风强度的多尺度变化特征,在年际与年代际尺度上分别寻找了它在前冬海温场、200 hPa纬向风场上的前兆信号,并利用最优子集回归建立了东亚夏季风强度的多尺度统计物理预测模型。结果表明:东亚夏季风强度存在准4年、准13年和准43年的周期振荡。年际尺度上,前冬赤道东太平洋(10°N~10°S,160°W~80°W)海温与东亚夏季风强度有最强的显著负相关,且它与东亚夏季风强度在200 hPa纬向风场上的前兆信号有较强的负相关;年代际尺度上,南半球60°S与35°S附近200 hPa纬向风之差与东亚夏季风强度有最强的显著正相关,且它与东亚夏季风强度在热带印度洋、低纬度东南太平洋、低纬度南大西洋的海温及亚洲副热带200 hPa纬向风等前兆信号有强的正相关。通过探讨这两个前兆因子对东亚夏季风强度的预测意义,揭示了他们影响东亚夏季风强度年际和年代际变化的可能物理过程。所建立的东亚夏季风强度多尺度最优子集回归预测模型,不仅对东亚夏季风强度的年际变化具有较好的预测能力,而且对异常极值年份也具有一定的预测能力。  相似文献   
77.
Two physical parameters are introduced into the basic ocean equations to generalize numerical ocean models for various vertical coordinate systems and their hybrid features. The two parameters are formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara [Kasahara, A., 1974. Various vertical coordinate systems used for numerical weather prediction. Mon. Weather Rev. 102, 509–522], the Jacobian pressure gradient formulation of Song [Song, Y.T., 1998. A general pressure gradient formation for ocean models. Part I: Scheme design and diagnostic analysis. Mon. Weather Rev. 126 (12), 3213–3230], and a newly introduced parametric function that permits both Boussinesq (volume-conserving) and non-Boussinesq (mass-conserving) conditions. Based on this new formulation, a generalized modeling approach is proposed. Several representative oceanographic problems with different scales and characteristics––coastal canyon, seamount topography, non-Boussinesq Pacific Ocean with nested eastern Tropics, and a global ocean model––have been used to demonstrate the model’s capabilities for multiscale applications. The inclusion of non-Boussinesq physics in the topography-following ocean model does not incur computational expense, but more faithfully represents satellite-observed ocean-bottom-pressure data. Such a generalized modeling approach is expected to benefit oceanographers in solving multiscale ocean-related problems by using various coordinate systems on the same numerical platform.  相似文献   
78.
Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale (Sichuan Basin, China) as a type-example to characterize variations in mineral particle properties at microscale including particle morphology, form of contact and spatial distribution via mineral liberation analysis (MLA) and scanning electron microscopy (SEM). Deformation-based constitutive models are then built using finite element methods to define the impact of various architectures of fracture and mineral distributions at nanometer scale on the deformation characteristics at macroscale. Relative compositions of siliceous, calcareous and clay mineral particles are shown to be the key factors influencing brittleness. Shales with similar mineral composition show a spectrum of equivalent medium mechanical properties due to differing particle morphology and mineral heterogeneity. The predominance of small particles and/or point-point contacts are conducive to brittle failure, in general, and especially so when quartz-rich. Fracture morphology, length and extent of filling all influence shale deformability. High aspect-ratio fractures concentrate stress at fracture tips and are conducive to extension, as when part-filled by carbonate minerals. As fracture spacing increases, stress transfer between adjacent fractures weakens, stress concentrations are amplified and fracture extension is favored. The higher the fractal dimension of the fracture and heterogeneity of the host the more pervasive the fractures. Moreover, when fractures extend, their potential for intersection and interconnection contributes to a reduction in strength and the promotion of brittle failure. Thus, these results provide important theoretical insights into the role of heterogeneity on the deformability and strength of shale reservoirs with practical implications for their stimulation and in the recovery of hydrocarbons from them.  相似文献   
79.
基于非规则网格声波正演的时间域全波形反演   总被引:2,自引:2,他引:0       下载免费PDF全文
全波形反演是地震资料处理中速度建模的有力工具,相比层析成像等速度建模方法它能够得到速度场的更高频成分.本文给出了基于声波方程格子法正演的时间域全波形反演方法,该方法用非规则、非结构化的三角网格来离散计算区域及模型参数,能实现网格粒度与反演分辨率在空间上的自动匹配,内存需求少,计算效率高;采用L-BFGS优化方法,以分频段变网格的方式实施多尺度反演.以二维Overthrust模型进行了速度反演数值测试,显示了该方法的高效性和潜力.  相似文献   
80.
近年来灾害天气机理和预测研究的进展   总被引:4,自引:3,他引:4  
赵思雄  孙建华 《大气科学》2013,37(2):297-312
本文对近年来灾害天气机理和预测的研究成果作了简要的概述,涉及致洪暴雨、登陆台风、寒潮暴雪、强沙尘暴、高温酷暑等,紧密结合一些重大的极端天气事件展开分析.近年灾害天气频发,影响依旧十分严重.灾害天气多涉及各种尺度的系统以及它们之间的相互作用,加上气候变化,环流异常,中尺度系统活跃,使灾害天气的情况更趋复杂.本文对此作了探讨,并提出了一些需要面对和思考的问题,与大家切磋.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号