首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   20篇
  国内免费   38篇
测绘学   5篇
大气科学   17篇
地球物理   77篇
地质学   125篇
海洋学   13篇
天文学   2篇
综合类   17篇
自然地理   45篇
  2022年   4篇
  2021年   5篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   16篇
  2013年   14篇
  2012年   19篇
  2011年   28篇
  2010年   10篇
  2009年   21篇
  2008年   21篇
  2007年   23篇
  2006年   9篇
  2005年   14篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1998年   8篇
  1997年   8篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1989年   1篇
  1987年   5篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有301条查询结果,搜索用时 78 毫秒
211.
Structural mapping integrated with interpretation and forward modelling of aeromagnetic data form complimentary and powerful tools for regional structural analysis because both techniques focus on architecture and overprinting relationships. This approach is used to constrain the geometry and evolution of the sparsely exposed Mount Woods Inlier in the northern Gawler Craton. The Mount Woods Inlier records a history of poly-phase deformation, high-temperature metamorphism, and syn- and post-orogenic magmatism between ca. 1736 and 1584 Ma. The earliest deformation involved isoclinal folding, and the development of bedding parallel and axial planar gneissic foliation (S1). This was accompanied by high-temperature, upper amphibolite to granulite facies metamorphism at ca. 1736 Ma. During subsequent north–south shortening (D2), open to isoclinal south–southeast-oriented F2 folds developed as the Palaeoproterozoic successions of the inlier were thrust over the Archaean nuclei of the Gawler Craton. The syn-D2 Engenina Adamellite was emplaced at ca. 1692 Ma. The post-D2 history involved shear zone development and localised folding, exhumation of metamorphic rocks, and deposition of clastic sediments prior to the emplacement of the ca. 1584 Ma Granite Balta Suite. The Mount Woods Inlier is interpreted as the northern continuation of the Kimban Orogen.  相似文献   
212.
Samples collected in vertical sections from two recent (1169 AD and 1971 AD) lava flows show significant variations in both the palaeomagnetic vector and the rock magnetic characteristics. The age and the short cooling time of the flows (both are less than 3 m thick) are such that the observed range of palaeomagnetic variation is more than can reasonably be explained by secular variation. The variations in palaeomagnetic and rock magnetic characteristics appear in part to be a response to the relative proportions of two coexisting ferrimagnetic phases, one that displays a primary coarsegrained and Ti-rich composition and a second that has finer-grained, Ti-poor characteristics. The use of AF demagnetization in this study means that the latter phase will have a disproportionate influence on the palaeomagnetic results. It has been suggested elsewhere that in such a magnetic system the Ti-poor phase may represent a CRM formed at some temperature below its final Curie temperature; if so, the results of this study imply that not only does it affect the palaeointensity estimate (which requires a pure TRM) but it appears also to influence the palaeomagnetic direction to an extent that far exceeds the normal secular change that might be expected to occur during delayed acquisition. Such a result has important implications for palaeomagnetic studies that use lavas, both in the selection of a suitable sampling strategy and in the geomagnetic interpretation of palaeomagnetic variation within single flow units.  相似文献   
213.
 Analysis of the petrochemical characters of the 1669 Etnean lavas shows that they can be grouped into two sets: SET1 lavas were erupted from 11 to 20 March and are more primitive in composition than SET2, erupted later until the end of activity. Both sets may be interpreted as the result of crystallization under different conditions of two primary magmas which are compositionally slightly distinct and which fractionate different volumetric proportions of minerals. To explain why more mafic lavas (SET1) were erupted earlier than more acid ones (SET2), we argue that new deeper magma rose up into a reservoir where residing magma was fractionating. Density calculations demonstrate that new magma is less dense and may originate a plume, rapidly rising through the residing magma which is cooler and more volatile-depleted than the new magma. Calculations of uprise velocity assuming laminar flow are consistent with this hypothesis. Received: 20 November 1995 / Accepted: 2 August 1996  相似文献   
214.
G. Xu 《Ore Geology Reviews》1996,11(6):339-361
The sediment-hosted ZnPbAg deposit at Dugald River is situated 87 km northeast of Mount Isa, NW Queensland. It is a mid-scale base metal accumulation restricted to a black slate sequence of low metamorphic grade. The orebody is tabular and consists of fine- to medium-grained sulphides with a dominant mineralogy of sphalerite, pyrrhotite, pyrite, galena, quartz and muscovite. Three different ore types have been recognized based on mineralization textures; laminated, banded and brecciated. The present reserve stands at 38 million tons of ore averaging 13.0% Zn, 2.1% Pb and 42 g/t Ag. A structural investigation has revealed that six stages of deformation have affected the metasediments in the Dugald River area. The first four (D1, D2, D3 and D4) are characterized by the extensive development of folds and associated axial plane cleavage. They were all generated in a ductile regime and are of considerable significance for the structural evolution of this region as well as for the emplacement and localization of the sulphide mineralization. D5 provides a transition towards brittle deformation developing strong kink folds with subhorizontal axial planes. D6 was a brittle event, producing E-W-trending open folds and major NE and NW strike-slip faults crosscutting all the pre-existing structural elements plus segmenting the orebody. Correlation between the development of deformation and the formation of mineralization can be observed from macro- to microscales. Relationships of mineralization with folds and cleavage indicate a post-D2 (dominant deformation event) and probably syn-D4 deformation timing for the ZnPbAg mineralization at Dugald River, as suggested by the ubiquitous truncations of D2 fabrics by ore mineral assemblages throughout the deposit.  相似文献   
215.
Geochemical studies on cold meteoric waters, post-1980 hot spring waters, fumarole emissions from the dacite dome, and volcanic rocks at Mount St. Helens (MSH) from 1985 to 1989 show that magmatic volatiles are involved in the formation of a new hydrothermal system. Hot spring waters are enriched in 18O by as much as 2 and display enrichments in D relative to cold waters. A well-defined isotopic trend is displayed by the isotopic composition of a>400°C fumarole condensate collected from the central crater in 1980 (-33 D, +6 18O), of condensate samples collected on the dome, and of cold meteoric and hot spring waters. The trend indicates that mixing occurs between local meteoric water and magmatic water degassing from the dacite dome. Between 30 and 70% magmatic water is present in the dome fumarole discharges and 10% magnatic water has been added to the waters of the hydrothermal system. Relations between Cl, SO4 and HCO3 indicate that the hot spring waters are immature volcanic waters formed by reaction of rocks with waters generated by absorption of acidic volcanic fluids. In addition, the B/Cl ratios of the spring waters are similar to the B/Cl ratios of the fumarole condensates (0.02), values of 13C in the HCO3 of the hot springs (-9.5 to-13.5) are similar to the magmatic value at MSH (-10.5), and the 3He/4He ratio, relative to air, in a hot spring water is 5.7, suggesting a magmatic origin for this component.managed by Martin Marietta Energy Systems, Inc., under contract DE-AC05-84OR21400 with the US Department of Energy  相似文献   
216.
Sulphur dioxide emission rates were measured at Mount Etna, Italy during July 1987 while the volcano was undergoing relatively quiet activity. The SO2 flux averaged 930 ± 587 (1) Mg/d, excluding 19 July when the flux was 3200 ± 1730 (1) Mg/d. Rising magma and/or an influx of less degassed magma could explain the increased SO2 flux. The high SO2 flux did not correlate with changes in observed volcanic activity. This suggests that SO2 monitoring may be useful as an indicator of shallow magmatic activity, but not as a predictor of future eruptions of Mount Etna.Particles emitted from the two active craters, Bocca Nuova and Southeast Crater (SE), were composed of silicates, sulphates and dithionites. Chloride species were only observed in particles from SE. Different eruptive styles probably produced the differences in particle compositions emitted from each crater.Vapour — magma enrichment factors were calculated for many elements from both craters. Cl, Br and S were the most enriched elements in the sampled fumes. Similar enrichment factors at both craters suggest a common magma supply.Cl, S and F have the largest elemental fluxes emitted from Mount Etna. During quiet activity, the Cl flux represents 27% of the global anthropogenic emissions, but its effect is limited to the local region due to atmospheric removal processes. Mount Etna also exhaled significant amounts of Zn, Br, Mo, F and Cu compared with regional anthropogenic emissions.  相似文献   
217.
218.
Mt. Semeru, the highest mountain in Java (3,676 m), is one of the few persistently active composite volcanoes on Earth, with a plain supporting about 1 million people. We present the geology of the edifice, review its historical eruptive activity, and assess hazards posed by the current activity, highlighting the lahar threat. The composite andesite cone of Semeru results from the growth of two edifices: the Mahameru ‘old’ Semeru and the Seloko ‘young’ Semeru. On the SE flank of the summit cone, a N130-trending scar, branched on the active Jonggring-Seloko vent, is the current pathway for rockslides and pyroclastic flows produced by dome growth. The eruptive activity, recorded since 1818, shows three styles: (1) The persistent vulcanian and phreatomagmatic regime consists of short-lived eruption columns several times a day; (2) increase in activity every 5 to 7 years produces several kilometer-high eruption columns, ballistic bombs and thick tephra fall around the vent, and ash fall 40 km downwind. Dome extrusion in the vent and subsequent collapses produce block-and-ash flows that travel toward the SE as far as 11 km from the summit; and (3) flank lava flows erupted on the lower SE and E flanks in 1895 and in 1941–1942. Pyroclastic flows recur every 5 years on average while large-scale lahars exceeding 5 million m3 each have occurred at least five times since 1884. Lumajang, a city home to 85,000 people located 35 km E of the summit, was devastated by lahars in 1909. In 2000, the catchment of the Curah Lengkong River on the ESE flank shows an annual sediment yield of 2.7 × 105 m3 km−2 and a denudation rate of 4 105 t km−2 yr−1, comparable with values reported at other active composite cones in wet environment. Unlike catchments affected by high magnitude eruptions, sediment yield at Mt. Semeru, however, does not decline drastically within the first post-eruption years. This is due to the daily supply of pyroclastic debris shed over the summit cone, which is remobilised by runoff during the rainy season. Three hazard-prone areas are delineated at Mt. Semeru: (1) a triangle-shaped area open toward the SE has been frequently swept by dome-collapse avalanches and pyroclastic flows; (2) the S and SE valleys convey tens of rain-triggered lahars each year within a distance of 20 km toward the ring plain; (3) valleys 25 km S, SE, and the ring plain 35 km E toward Lumajang can be affected by debris avalanches and debris flows if the steep-sided summit cone fails.  相似文献   
219.
This paper presents and compares ground thermal regimes at 4200 and 4800 m a.s.l. on Mount Kenya's southern aspect. Temperatures were recorded using Tinytalk? data loggers, installed at the ground surface and at depths of 1 cm, 5 cm, 10 cm and 50 cm. Temperatures were logged at 2‐hour intervals over a period of 12 months (August 1998 to July 1999). The study is designed to demonstrate near‐surface freeze conditions, which would have implications for contemporary periglacial landform production. Although ground freeze at 4200 m a.s.l. occurs during most nights (c. 70% at 1 cm depth), freeze penetration is restricted to the top 2 to 3 cm, such that no freeze was recorded at 5 cm depth. At 4800 m a.s.l., the diurnal frost frequency at the surface is 365 days (100%), whilst that at 10 cm depth is 165 days (45%). The paper demonstrates that a greater longevity of contemporary thin snow cover at 4800 m a.s.l. permits progressive sub‐surface cooling with depth. However, the near‐surface ground temperature profiles suggest that conditions are not conducive to permafrost development at the sites.  相似文献   
220.
Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80×200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occurred in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and disequilibrium mineral assemblages. In addition, some dacites and andesites contain Mg and Ni-rich olivines and/or have high MgO, Cr, Ni, Co, and Sc contents that are not in equilibrium with the host rock and indicate mixing between basalt or cumulate material and more evolved magmas. Incompatible element variations suggest that fractionation is responsible for some of the compositional range between basaltic andesite and dacite, but the rhyolites have K, Ba, Th, and Rb contents that are too low for the magmas to be generated by fractionation of the intermediate rocks. Limited Sr-isotope data support the possibility that the rhyolites may be partial melts of underlying volcanic rocks. Received March 13, 1993/Accepted September 10, 1993  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号