首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4430篇
  免费   1128篇
  国内免费   2020篇
测绘学   113篇
大气科学   3606篇
地球物理   860篇
地质学   505篇
海洋学   1323篇
天文学   270篇
综合类   161篇
自然地理   740篇
  2024年   48篇
  2023年   127篇
  2022年   209篇
  2021年   237篇
  2020年   270篇
  2019年   346篇
  2018年   235篇
  2017年   266篇
  2016年   246篇
  2015年   263篇
  2014年   328篇
  2013年   379篇
  2012年   387篇
  2011年   381篇
  2010年   291篇
  2009年   369篇
  2008年   282篇
  2007年   377篇
  2006年   344篇
  2005年   295篇
  2004年   252篇
  2003年   214篇
  2002年   206篇
  2001年   160篇
  2000年   160篇
  1999年   132篇
  1998年   127篇
  1997年   90篇
  1996年   110篇
  1995年   97篇
  1994年   72篇
  1993年   80篇
  1992年   53篇
  1991年   40篇
  1990年   20篇
  1989年   19篇
  1988年   18篇
  1987年   16篇
  1986年   1篇
  1985年   6篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1954年   1篇
排序方式: 共有7578条查询结果,搜索用时 15 毫秒
521.
A radial anisotropy in the flux of cosmic rays in heliosphere was theoretically predicted by Parker and others within the framework of the diffusion–convection mechanism. The solar wind is responsible for sweeping out the galactic cosmic rays, creating a radial density gradient within the heliosphere. This gradient coupled with the interplanetary magnetic field induces a flow of charged particles perpendicular to the ecliptic plane which was measured and correctly explained by Swinson, and is hereafter referred as ‘Swinson flow’. The large area GRAPES-3 tracking muon telescope offers a powerful probe to measure the Swinson flow and the underlying radial density gradient of the galactic cosmic rays at a relatively high rigidity of ∼100 GV. The GRAPES-3 data collected over a period of six years (2000–2005) were analyzed and the amplitude of the Swinson flow was estimated to be (0.0644 ± 0.0008)% of cosmic ray flux which was an ∼80σ effect. The phase of the maximum flow was at a sidereal time of (17.70 ± 0.05) h which was 18 min earlier than the expected value of 18 h. This small 18 min phase difference had a significance of ∼6σ indicating the inherent precision of the GRAPES-3 measurement. The radial density gradient of the galactic cosmic rays at a median rigidity of 77 GV was found to be 0.65% AU−1.  相似文献   
522.
Mass concentrations of Total Suspended Particles (TSP) and size-segregated particles were obtained from July 2001 to June 2002 in Qingdao to characterize the seasonal variations of atmospheric aerosols and to show the impact of dust events on the air quality in Qingdao. Data on size-segregated aerosols show that 73.74% of the TSP mass concentration is contributed by particles with diameters less than 11 μm. Particles with diameters less than 1.1μm have a higher concentration during the winter. In spring, larger particles tend to have higher mass concentrations. Bimodal particle size distributions have been observed, with maxima around 4.7-7 μand 0.43-0.65 μm in the winter season, and 7-11 μm and 0.65-1.1 μm in the autumn season. Measurements made during the dust events in March 2002 show high concentrations of particles in the size range 2.1-7μm.  相似文献   
523.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
524.
Changes in water quality during a storm event were continuously monitored over a 24 h period at a single location along an urban stormwater drain in Butte, Montana. The Butte Metro Storm Drain (MSD) collects groundwater baseflow and stormwater draining Butte Hill, a densely populated site that has been severely impacted by 130 years of mining, milling, and smelting of copper‐rich, polymetallic mineral deposits. On the afternoon of 26 June 2002, a heavy thunderstorm caused streamflow in the MSD to increase 100‐fold, from 0·2 ft3 s−1 to more than 20 ft3 s−1. Hourly discharge and water quality data were collected before, during, and following the storm. The most significant finding was that the calculated loads (grams per hour) of both dissolved and particulate copper passing down the MSD increased more than 100‐fold in the first hour following the storm, and remained elevated over baseline conditions for the remainder of the study period. Other metals, such as zinc, cadmium, and manganese, showed a decrease in load from pre‐storm to post‐storm conditions. In addition to the large flush of copper, loads of soluble phosphorus increased during the storm, whereas dissolved oxygen dropped to low levels (<2 mg l−1). These results show that infrequent storm events in Butte have the potential to generate large volumes of runoff that exceed Montana water quality standards for acute exposure of aquatic life to copper, as well as depressed levels of dissolved oxygen. This study has important implications to ongoing reclamation activities in the upper Clark Fork Superfund site, particularly with respect to management of storm flow, and may be applicable to other watersheds impacted by mining activities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
525.
本文利用热成风适应原理,采取分解分析法对青藏高原500hpa暖性高压的生成机制作了一些定性和定量的讨论。结果表明:在扰动的水平尺度大于热成风适应的特征尺度的条件下,当源地有明显的负值非热成风涡度出现时,流场将向温度场适应,而温度场由于高原的加热作用存在暖中心或暖脊,则适应的结果在高原大气500hpa形成暖性高压,并伴随高层辐合,低层辐散及下沉运动。  相似文献   
526.
We present results from the Chandra X-ray Observatory's extensive campaign studying Comet 9P/Tempel 1 (T1) in support of NASA's Deep Impact (DI) mission. T1 was observed for ∼295 ks between 30th June and 24th July 2005, and continuously for ∼64 ks on July 4th during the impact event. X-ray emission qualitatively similar to that observed for the collisionally thin Comet 2P/Encke system [Lisse, C.M., Christian, D.J., Dennerl, K., Wolk, S.J., Bodewits, D., Hoekstra, R., Combi, M.R., Mäkinen, T., Dryer, M., Fry, C.D., Weaver, H., 2005b. Astrophys. J. 635 (2005) 1329-1347] was found, with emission morphology centered on the nucleus and emission lines due to C, N, O, and Ne solar wind minor ions. The comet was relatively faint on July 4th, and the total increase in X-ray flux due to the Deep Impact event was small, ∼20% of the immediate pre-impact value, consistent with estimates that the total coma neutral gas release due to the impact was 5×106 kg (∼10 h of normal emission). No obvious prompt X-ray flash due to the impact was seen. Extension of the emission in the direction of outflow of the ejecta was observed, suggesting the presence of continued outgassing of this material. Variable spectral features due to changing solar wind flux densities and charge states were clearly seen. Two peaks, much stronger than the man-made increase due to Deep Impact, were found in the observed X-rays on June 30th and July 8th, 2005, and are coincident with increases in the solar wind flux arriving at the comet. Modeling of the Chandra data using observed gas production rates and ACE solar wind ion fluxes with a CXE mechanism for the emission is consistent, overall, with the temporal and spectral behavior expected for a slow, hot wind typical of low latitude emission from the solar corona interacting with the comet's neutral coma, with intermittent impulsive events due to solar flares and coronal mass ejections.  相似文献   
527.
The problem of solar wind-magnetosphere coupling is investigated for intense geomagnetic storms (Dst < -100nT) that occurred during solar cycle 23. For this purpose interplanetary plasma and field data during some intensely geo-effective transient solar/interplanetary disturbances have been analysed. A geomagnetic index that represents the intensity of planetary magnetic activity at subauroral latitude and the other that measures the ring current magnetic field, together with solar plasma and field parameters (V, B, Bz, σB, N, and T) and their various derivatives (BV,-BVz, BV2, -BzV2, B2V, Bz2V, NV2) have been analysed in an attempt to study mechanism and the cause of geo-effectiveness of interplanetary manifestations of transient solar events. Several functions of solar wind plasma and field parameters are tested for their ability to predict the magnitude of geomagnetic storm.  相似文献   
528.
The wind system over the seas southeast of Asia (SSEA) plays an important role in China's climate variation. In this paper, ERS scatterometer winds covering the period from January 2000 to December 2000 and the area of 2-41 °N, 105- 130°E were analyzed with a distance-weighting interpolation method and the monthly mean distribution of the sea surface wind speed were given. The seasonal characteristics of winds in the SSEA were analyzed. Based on WAVEWATCH Ⅲ model, distribution of significant wave height was calculated.  相似文献   
529.
Using tropical cyclone (TC) best track and intensity of the western North Pacific data from the Joint TyphoonWarning Center (JTWC) of the United States and the NCEP/NCAR reanalysis data for the period of 1992-2002, the effects of vertical wind shear on TC intensity are examined. The samples were limited to the westward or northwestward moving TCs between 5°N and 20°N in order to minimize thermodynamic effects. It is found that the effect of vertical wind shear between 200 and 500 hPa on TC intensity change is larger than that of the shear between 500 and 850 hPa, while similar to that of the shear between 200 and 850 hPa. Vertical wind shear may have a threshold value, which tends to decrease as TC intensifies. As the intensifying rate of TC weakens, the average shear increases. The large shear has the obvious trend of inhibiting TC development. The average shear of TC which can develop into typhoon (tropical depression or tropical storm) is below 7 m s-1 (above 8 m s-1).  相似文献   
530.
Understanding the intensity and duration of tropical rain events is critical to modelling the rate and timing of wet‐canopy evaporation, the suppression of transpiration, the generation of infiltration‐excess overland flow and hence to erosion, and to river responsiveness. Despite this central role, few studies have addressed the characteristics of equatorial rainstorms. This study analyses rainfall data for a 5 km2 region largely comprising of the 4 km2 Sapat Kalisun Experimental Catchment in the interior of northeastern Borneo at sampling frequencies from 1 min?1 to 1 day?1. The work clearly shows that most rainfall within this inland, forested area is received during regular short‐duration events (<15 min) that have a relatively low intensity (i.e. less than two 0·2 mm rain‐gauge tips in almost all 5 min periods). The rainfall appears localized, with significant losses in intergauge correlations being observable in minutes in the case of the typical mid‐afternoon, convective events. This suggests that a dense rain‐gauge network, sampled at a high temporal frequency, is required for accurate distributed rainfall‐runoff modelling of such small catchments. Observed rain‐event intensity is much less than the measured infiltration capacities, and thus supports the tenet of the dominance of quick subsurface responses in controlling river behaviour in this small equatorial catchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号