首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   56篇
  国内免费   28篇
测绘学   41篇
大气科学   17篇
地球物理   159篇
地质学   84篇
海洋学   45篇
天文学   5篇
综合类   9篇
自然地理   29篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   14篇
  2018年   3篇
  2017年   15篇
  2016年   13篇
  2015年   23篇
  2014年   29篇
  2013年   28篇
  2012年   8篇
  2011年   25篇
  2010年   21篇
  2009年   30篇
  2008年   37篇
  2007年   26篇
  2006年   16篇
  2005年   18篇
  2004年   9篇
  2003年   7篇
  2002年   12篇
  2001年   10篇
  2000年   10篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
排序方式: 共有389条查询结果,搜索用时 140 毫秒
131.
An analytical model which generalizes the equations describing the intensity of galactic cosmic rays (CR), including both processes, making it applicable in the inner heliosphere (where energy losses dominate) and outer heliosphere (influenced primarily by convection-diffusion processes) is derived. By a suitable choice of a parameter, the proposed model turns into two approximations: solution close to “force-field” model (describing the energy losses of CR in the inner heliosphere) and “convection-diffusion” equation (giving the reduction of CR intensity in the outer heliosphere). A mathematical relation between parameters in the proposed model and the modulation parameter Φ is derived.  相似文献   
132.
Physics-based distributed models for simulating flow in karst systems are generally based on the discrete–continuum approach in which the flow in the three-dimensional fractured limestone matrix continuum is coupled with the flow in discrete one-dimensional conduits. In this study we present a newly designed discrete–continuum model for simulating flow in karst systems. We use a flexible spatial discretization such that complicated conduit networks can be incorporated. Turbulent conduit flow and turbulent surface flow are described by the diffusion wave equation whereas laminar variably saturated flow in the matrix is described by the Richards equation. Transients between free-surface and pressurized conduit flow are handled by changing the capacity term of the conduit flow equation. This new approach has the advantage that the transients in mixed conduit flow regimes can be handled without the Preissmann slot approach. Conduit–matrix coupling is based on the Peaceman’s well-index such that simulated exchange fluxes across the conduit–matrix interface are less sensitive to the spatial discretization. Coupling with the surface flow domain is based on numerical techniques commonly used in surface–subsurface models and storm water drainage models. Robust algorithms are used to simulate the non-linear flow processes in a coupled fashion. The model is verified and illustrated with simulation examples.  相似文献   
133.
Treelines are widely studied worldwide in relation to climate changes because they are hypothesized to be sensitive climate proxies. However, forest treeline expansion toward higher altitudes may be influenced both by a warming climate and by other factors, such as surface morphology and, in the European Alps, the decline in alpine farming. Our results from five valleys in the inner and peripheral regions of the Alps show that present-day treeline altitudes mostly depend on anthropogenic and orographicgeomorphologic factors. Climatic treelines are limited to steep and inaccessible slopes, and occur at higher altitudes and farther from mountain peaks in the inner regions than in the peripheral regions of the mountain range. Looking for sites in which to study treeline responses to climate change, we recommend investigating the inner regions of the Alps where treelines are farther from human disturbances and from geomorphologic constraints, potentially resulting in freer upward shifts under warmer temperature conditions. We also found that, in the valleys selected, human disturbance is mainly concentrated about 165 m below non-climatic treelines, suggesting a homogeneous influence on treelines, regardless of geographic position.  相似文献   
134.
根据研究区水文地质条件,在地下水极丰富区选定尤口、谢埠、桃花三个地段作为突发性应急供水水源地.在现状开采情况下,以满足2020年研究区生活用水量(69.3×104m3/d)3个月为目标,应用GMS软件模拟三个水源地在最不利降水条件下应急供水情况.应急供水3个月之后,桃花有7口井疏干含水层厚度超过原厚度的2/3,最大为78.67%,最小为35.22%,平均为56.48%,基本能满足应急供水要求;谢埠与尤口最大疏干含水层厚度均未超出2/3,平均分别为41.06%和26.30%,均能满足应急供水要求.应急开采时,含水层疏干提供水量所占比重均在90%以上.当3个月应急供水结束后,维持现状开采,在年末桃花、谢埠、尤口含水层厚度分别可恢复至原厚度的89.82% 、82.57%、85.45%,具有良好的恢复性能.可见,桃花、谢埠、尤口适合作为应急水源地.  相似文献   
135.
Global climate change may have a noticeable impact on the northern environment, leading to changes in permafrost, vegetation and fluvial morphology. In this paper we compare the results from three geomorphological models and study the potential effects of changing climatic factors on the river channel types in North-European Russia. Two of the selected models by Romashin [Romashin, V.V., 1968. Variations of the river channel types under governing factors, Annals of the Hydrological Institute, vol. 155. Hydrometeoizdat, Leningrad, pp. 56–63.] and Leopold and Wolman [Leopold, L.B., Wolman, M.G., 1957. River channel pattern: braided, meandering and straight, Physiographic and hydraulic studies of rivers. USA Geological Survey Professional Paper 252, pp. 85–98.] are conventional QS-type models, which predict the existence of either multi-thread or single-tread channel types using data on discharge and channel slope. The more advanced model by Van den Berg [Van den Berg, J.H., 1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12, 259–270.] takes into account the size of the sediment material.We used data from 16 runoff gauges to validate the models and predict the channel types at selected locations under modern and predicted for the future climatic conditions. Two of the three models successfully replicated the currently existing channel types in all but one of the studied sites. Predictive calculations under the hypothetical scenarios of 10%, 15%, 20% and 35% runoff increase gave different results. Van den Berg's model predicted potential transformation of the channel types, from single- to multi-thread, at 4 of 16 selected locations in the next few decades, and at 5 locations by the middle of the 21st century. Each of the QS-type models predicted such transformation at one site only.Results of the study indicate that climatic warming in combination with other environmental changes may lead to transformation of the river channel types at selected locations in north-western Russia. Further efforts are needed to improve the performance of the fluvial geomorphological models and their ability to predict such changes.  相似文献   
136.
A three-layer Artificial Neural Network (ANN) model (9:12:1) for the prediction of Chemical Oxygen Demand Removal Efficiency (CODRE) of Upflow Anaerobic Sludge Blanket (UASB) reactors treating real cotton textile wastewater diluted with domestic wastewater was presented. To validate the proposed method, an experimental study was carried out in three lab-scale UASB reactors to investigate the treatment efficiency on total COD reduction. The reactors were operated for 80 days at mesophilic conditions (36–37.5°C) in a temperature-controlled water bath with two hydraulic retention times (HRT) of 4.5 and 9.0 days and with organic loading rates (OLR) between 0.072 and 0.602 kg COD/m3/day. Five different dilution ratios of 15, 30, 40, 45 and 60% with domestic wastewater were employed to represent seasonal fluctuations, respectively. The study was undertaken in a pH range of 6.20–8.06 and an alkalinity range of 1,350–1,855 mg/l CaCO3. The concentrations of volatile fatty acids (VFA) and total suspended solids (TSS) were observed between 420 and 720 mg/l CH3COOH and 68–338 mg/l, respectively. In the study, a wide range of influent COD concentrations (CODi) between 651 and 4,044 mg/l in feeding was carried out. CODRE of UASB reactors being output parameter of the conducted anaerobic treatment was estimated by nine input parameters such as HRT, pH, CODi concentration, operating temperature, alkalinity, VFA concentration, dilution ratio (DR), OLR, and TSS concentration. After backpropagation (BP) training combined with principal component analysis (PCA), the ANN model predicted CODRE values based on experimental data and all the predictions were proven to be satisfactory with a correlation coefficient of about 0.8245. In the ANN study, the Levenberg-Marquardt Algorithm (LMA) was found as the best of 11 BP algorithms. In addition to determination of the optimal ANN structure, a linear-nonlinear study was also employed to investigate the effects of input variables on CODRE values in this study. Both ANN outputs and linear-nonlinear study results were compared and advantages and further developments were evaluated.  相似文献   
137.
In this paper we discuss hydraulic behavior of irrigation infrastructure within a context of spatially distributed power relations in an Argentinean irrigation system. In the Río Dulce basin, the irrigation area known as the Proyecto Río Dulce (PRD, command area 350,000 hectares) is the main irrigated area. An interesting characteristic of the PRD is that the larger landowners are mainly situated in tail end areas. Despite this potentially disadvantageous position, downstream farmers do not encounter problems in terms of water availability. This should not be regarded as self-evident: the hydraulic properties of the canals induce a need for downstream farmers to take deliberate action to ensure proper water delivery to their farms. When upstream farmers do not irrigate, too much water can flow downstream; when they irrigate too much, or manipulate cross regulators, downstream water scarcity can be the result; when canals are not maintained, extensive plant growth will increase hydraulic resistance and decrease discharges. It is not a coincidence that the downstream farmers invest heavily in canal operation and maintenance. These investments appear to be appropriate, as larger farmers tend to irrigate much more on average, compared to the smaller farmers upstream. The Argentinean case brings up issues on the structuring effects of irrigation systems, which need stronger theoretical understanding.  相似文献   
138.
A new modeling approach for solute transport in streams and canals was developed to simulate solute dissolution, transport, and decay with continuously migrating sources. The new approach can efficiently handle complicated solute source feeding schemes and initial conditions. Incorporating the finite volume method (FVM) and the ULTIMATE QUICKEST numerical scheme, the new approach is capable of predicting fate and transport of solute that is added to small streams or canals, typically in a continuous fashion. The approach was tested successfully using a hypothetical case, and then applied to an actual field experiment, where linear anionic polyacrylamide (LA-PAM) was applied to an earthen canal. The field experiment was simulated first as a fixed boundary problem using measured concentration data as the boundary condition to test model parameters and sensitivities. The approach was then applied to a moving boundary problem, which included subsequent LA-PAM dissolution, settling to the canal bottom and transport with the flowing canal water. Simulation results showed that the modeling approach developed in this study performed satisfactorily and can be used to simulate a variety of transport problems in streams and canals.  相似文献   
139.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   
140.
Owing to their simplicity and reasonable accuracy, Beam on Nonlinear Winkler Foundation (BNWF) models are widely used for the analysis of laterally loaded piles. Their main drawback is idealizing the soil continuum with discrete uncoupled springs representing the soil reactions to pile movement. Static py curves, obtained from limited full-scaled field tests, are generally used as a backbone curve of the model. However, these empirically derived p–y curves could not incorporate the effects of various pile properties and soil continuity. The strain wedge method (SWM) has been improved to assess the nonlinear p–y curve response of laterally loaded piles based on a three-dimensional soil–pile interaction through a passive wedge developed in front of the pile. In this paper, the SWM based p–y curve is implemented as the backbone curves of developed BNWF model to study the nonlinear response of single pile under cyclic lateral loading. The developed nonlinear model is capable of accounting for various important soil–pile interaction response features such as soil and pile yielding, cyclic degradation of soil stiffness and strength under generalized loading, soil–pile gap formation with soil cave-in and recompression, and energy dissipation. Some experimental tests are studied to verify the BNWF model and examine the effect of each factor on the response of laterally loaded pile embedded in sand and clay. The experimental data and computed results agree well, confirming the model ability to predict the response of piles under one-way and two-way cyclic loading. The results show that the developed model can satisfactorily simulate the pile stiffness hardening due to soil cave in and sand densification as observed in the experiment. It is also concluded from the results that the gap formation and soil degradation have significant effects on the increase of lateral pile-head deflection and maximum bending moment of the pile in cohesive soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号