首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4475篇
  免费   571篇
  国内免费   1131篇
测绘学   144篇
大气科学   544篇
地球物理   803篇
地质学   2186篇
海洋学   1207篇
天文学   100篇
综合类   212篇
自然地理   981篇
  2024年   37篇
  2023年   137篇
  2022年   240篇
  2021年   219篇
  2020年   197篇
  2019年   231篇
  2018年   181篇
  2017年   203篇
  2016年   239篇
  2015年   252篇
  2014年   326篇
  2013年   389篇
  2012年   311篇
  2011年   340篇
  2010年   217篇
  2009年   296篇
  2008年   306篇
  2007年   215篇
  2006年   271篇
  2005年   206篇
  2004年   197篇
  2003年   155篇
  2002年   135篇
  2001年   129篇
  2000年   136篇
  1999年   106篇
  1998年   95篇
  1997年   80篇
  1996年   52篇
  1995年   60篇
  1994年   39篇
  1993年   27篇
  1992年   23篇
  1991年   10篇
  1990年   12篇
  1989年   7篇
  1988年   17篇
  1987年   6篇
  1986年   16篇
  1985年   22篇
  1984年   10篇
  1983年   5篇
  1982年   13篇
  1981年   11篇
  1980年   1篇
排序方式: 共有6177条查询结果,搜索用时 11 毫秒
41.
流沙湾的底栖大型海藻调查   总被引:1,自引:0,他引:1  
2008年3月~2009年1月调查了流沙湾潮间带及湾内(109°55'~109°59'E,20?22'~20°28'N)底栖大型海藻资源,定性、定量分析该海湾底栖大型海藻种类、生态分布、区系性质、群落结构及生物量的季节变化规律。共采集底栖大型海藻3门10目17科19属32种,其中红藻门4目9科9属15种,绿藻门4目6科7属14种,褐藻门2目2科3属3种,以亚热带藻种占绝对优势,达59.4%,温带成分21.9%,热带成分18.7%。采样海藻具印度-西太平洋海洋植物区系中国-日本亚热带海洋植物亚区特点。调查区域内底栖大型海藻群落组成的季节变化明显。  相似文献   
42.
春秋季山东南部近岸浮游细菌生态分布   总被引:1,自引:0,他引:1  
分别于2007年4月(春季)和10月(秋季),对山东南部近岸海域进行了现场调查,研究了该海区浮游细菌丰度、生物量分布特征,探讨了它们与温度、溶解氧(DO)、总氮(N)、总磷(P)、硝酸盐(NO-3)、铵盐(NH+2)及活性磷酸盐(PO4-P)的相关性.结果表明:浮游细菌生物量具有一定的时间、空间分布特征,春季浮游细菌丰度及生物量要高于秋季,2个季节近岸细菌数量高于远岸区域;浮游细菌丰度及生物量与温度、DO、总P、NO-3、NH+2及PO4-P均呈显著相关关系(P<0.01),表明上述因子可能是该海域浮游细菌数量分布的主要限制因子.  相似文献   
43.
The temporal and spatial variability of dissolved inorganic phosphate (DIP), nitrogen (DIN), carbon (DIC) and dissolved organic carbon (DOC) were studied in order to determine the net ecosystem metabolism (NEM) of San Diego Bay (SDB), a Mediterranean-climate lagoon. A series of four sampling campaigns were carried out during the rainy (January 2000) and the dry (August 2000 and May and September 2001) seasons. During the dry season, temperature, salinity and DIP, DIC and DOC concentrations increased from oceanic values in the outer bay to higher values at the innermost end of the bay. DIP, DIC and DOC concentrations showed a clear offset from conservative mixing implying production of these dissolved materials inside the bay. During the rainy season, DIP and DOC increased to the head, whereas salinity decreased toward the mouth due to land runoff and river discharges. The distributions of DIP and DOC also showed a deviation from conservative mixing in this season, implying a net addition of these dissolved materials during estuarine mixing within the bay. Mass balance calculations showed that SDB consistently exported DIP (2.8–9.8 × 103 mol P d−1), DIC (263–352 × 103 mol C d−1) and DOC (198–1233 × 103 mol C d−1), whereas DIN (5.5–18.2 × 103 mol N d−1) was exported in all samplings except in May 2001 when it was imported (8.6 × 103 mol N d−1). The DIP, DIC and DOC export rates along with the strong relationship between DIP, DIC or DOC and salinity suggest that intense tidal mixing plays an important role in controlling their distributions and that SDB is a source of nutrients and DOC to the Southern California Bight. Furthermore, NEM ranged from −8.1 ± 1.8 mmol C m−2 d−1 in September to −13.5 ± 5.8 mmol C m−2 d−1 in January, highlighting the heterotrophic character of SDB. In order to explain the net heterotrophy of this system, we postulate that phytoplankton-derived particulate organic matter, stimulated by upwelling processes in the adjacent coastal waters, is transported into the bay, retained and then remineralized within the system. Our results were compared with those reported for the heterotrophic hypersaline coastal lagoons located in the semi-arid coast of California–Baja California, and with those autotrophic hypersaline systems found in the semi-arid areas of Australia. We point out that the balance between autotrophy and heterotrophy in inverse estuaries is dependent on net external inputs of either inorganic nutrients or organic matter as it has been indicated for positive estuaries.  相似文献   
44.
We report radiocarbon measurements of dissolved inorganic carbon (DIC) in surface water samples collected daily during cruises to the central North Pacific, the Sargasso Sea and the Southern Ocean. The ranges of Δ14C measurements for each cruise (11–30‰) were larger than the total uncertainty (7.8‰, 2-sigma) of the measurements. The variability is attributed to changes in the upper water mass that took place at each site over a two to four week period. These results indicate that variability of surface Δ14C values is larger than the analytical precision, because of patchiness that exists in the DIC Δ14C signature of the surface ocean. This additional variability can affect estimates of geochemical parameters such as the air–sea CO2 exchange rate using radiocarbon.  相似文献   
45.
The composition, density and community structure of the benthic macrofauna were investigated in sediments of the Campeche Canyon in the SW Gulf of Mexico. Total macrofaunal density ranged from 9466±2736 ind m−2 at the continental shelf station to 1550±195 ind m−2 in the canyon. Density values significantly diminished with distance from the coast and depth; only a few stations in the center of the canyon displayed larger density values (E-37 with 4666±1530 ind m−2, E-36 with 5791±642 ind m−2 and E-26 with 6925±2258 ind m−2). Densities were positively correlated to organic nitrogen in the sediment (r=0.82) and coarse silt (r=0.43), and negatively with depth (r=−0.74) and distance from the coast (r=−0.68). At all stations, the polychaete worms contributed most to the multi-species community structure. The nematodes and Foraminifera displayed their highest densities in the center of the canyon. The biomass values declined significantly with depth. We conclude that the macrofauna density and biomass changed in response to organic matter contents in the sediment, both with distance from the coast and with depth.  相似文献   
46.
47.
Molecular organic biomarkers together with trace element composition were investigated in sediments east of Barrow Canyon in the western Arctic Ocean to determine sources and recycling of organic carbon in a continuum from the shelf to the basin. Algal biomarkers (polyunsaturated and short-chain saturated fatty acids, 24-methylcholesta-5,24(28)-dien-3β-ol, dinosterol) highlight the substantial contribution of organic matter from water column and sea-ice primary productivity in shelf environments, while redox markers such as acid volatile sulfide (AVS), Mn, and Re indicate intense metabolism of this material leading to sediment anoxia. Shelf sediments also receive considerable inputs from terrestrial organic carbon, with biomarker composition suggesting the presence of multiple pools of terrestrial organic matter segregated by age/lability or hydrodynamic sorting. Sedimentary metabolism was not as intense in slope sediments as on the shelf; however, sufficient labile organic matter is present to create suboxic and anoxic conditions, at least intermittently, as organic matter is focused towards the slope. Basin sediments also showed evidence for episodic delivery of labile organic carbon inputs despite the strong physical controls of water depth and sea-ice cover. Principal components analysis of the lipid biomarker data was used to estimate fractions of preserved recalcitrant (of terrestrial origin) and labile (of marine origin) organic matter in the sediments, with ranges of 12–79%, 14–45%, and 37–66% found for the shelf, slope, and basin cores, respectively. On average, the relative preserved terrestrial organic matter in basin sediments was 56%, suggesting exchange of organic carbon between nearshore and basin environments in the western Arctic.  相似文献   
48.
The MedFlux project was devised to determine and model relationships between organic matter and mineral ballasts of sinking particulate matter in the ocean. Specifically we investigated the ballast ratio hypothesis, tested various commonly used sampling and modeling techniques, and developed new technologies that would allow better characterization of particle biogeochemistry. Here we describe the rationale for the project, the biogeochemical provenance of the DYFAMED site, the international support structure, and highlights from the papers published here. Additional MedFlux papers can be accessed at the MedFlux web site (http://msrc.sunysb.edu/MedFlux/).  相似文献   
49.
Oxygen and total dissolved inorganic carbon (DIC) fluxes at the water–sediment interface were measured using benthic chambers to assess the short-term variations of community respiration (CR) in the back reef sediments of Reunion Island (Indian Ocean). Benthic CR had a daily cycle of minimal (6:00 AM) and maximal values (6:00 PM), showing increases of oxygen and DIC fluxes of 2.8- and 3.8-fold, respectively. Average CR values were observed at midday and midnight. The evolution of fluxes was positively related to oxygen concentration in ambient water, but not to temperature changes. In the study area, high daytime primary production augments the amount of energy available for community metabolism and increases benthic respiration. The benthic communities are therefore subjected to short-term variable environmental conditions with oxygen supersaturation during the day, and moderately hypoxic conditions at the end of the night.  相似文献   
50.
This paper systematically studies the rolling effects of the (n, n) single-wall carbon nanotubes (SWCNT) with different curvatures on Rh adsorption behaviours by using density functional theory. The outside charge densities of SWCNTs are found to be higher than those inside, and the differences decrease with the increase of the tube radius. This electronic property led to the discovery that the outside adsorption energies are higher than the inside ones, and that the differences are reduced with the increase of the tube radius. Partial density of states and charge density difference indicate that these strong interactions induce electron transfer between Rh atoms and SWCNTs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号