首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3719篇
  免费   462篇
  国内免费   263篇
测绘学   127篇
大气科学   601篇
地球物理   1596篇
地质学   1116篇
海洋学   391篇
天文学   32篇
综合类   28篇
自然地理   553篇
  2024年   13篇
  2023年   23篇
  2022年   28篇
  2021年   77篇
  2020年   155篇
  2019年   131篇
  2018年   118篇
  2017年   172篇
  2016年   169篇
  2015年   137篇
  2014年   161篇
  2013年   394篇
  2012年   100篇
  2011年   133篇
  2010年   111篇
  2009年   195篇
  2008年   264篇
  2007年   227篇
  2006年   225篇
  2005年   214篇
  2004年   166篇
  2003年   133篇
  2002年   121篇
  2001年   117篇
  2000年   117篇
  1999年   110篇
  1998年   108篇
  1997年   103篇
  1996年   73篇
  1995年   73篇
  1994年   53篇
  1993年   60篇
  1992年   37篇
  1991年   26篇
  1990年   21篇
  1989年   20篇
  1988年   22篇
  1987年   7篇
  1986年   12篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1954年   2篇
排序方式: 共有4444条查询结果,搜索用时 31 毫秒
991.
Abstract

Event-based methods are used in flood estimation to obtain the entire flood hydrograph. Previously, such methods adopted in the UK have relied on pre-determined values of the input variables (e.g. rainfall and antecedent conditions) to a rainfall–runoff model, which is expected to result in an output flood of a particular return period. In contrast, this paper presents a method that allows all the input variables to take on values across the full range of their individual distributions. These values are then brought together in all possible combinations as input to an event-based rainfall–runoff model in a Monte Carlo simulation approach. Further, this simulation strategy produces a long string of events (on average 10 per year), where dependencies from one event to the next, as well as between different variables within a single event, are accounted for. Frequency analysis is then applied to the annual maximum peak flows and flow volumes.

Citation Svensson, C., Kjeldsen, T.R., and Jones, D.A., 2013. Flood frequency estimation using a joint probability approach within a Monte Carlo framework. Hydrological Sciences Journal, 58 (1), 1–20.  相似文献   
992.
Aeolian deposits form noteworthy reservoirs (for example, Norphlet Formation and Rotliegend Group) in hydrocarbon extraction and carbon capture and storage contexts, but stratigraphic architecture imparts significant heterogeneity. Bounding surfaces result from autogenic and allogenic controls and can represent important changes in dune-field dynamics. To further evaluate the impacts of facies heterogeneity and flow-inhibiting bounding surfaces on reservoir performance and reconstruct ancient erg evolution, the stratigraphic architecture of aeolian systems must continue to be studied at multiple scales. This study pairs traditional methods (for example, measured stratigraphic sections) with advanced technologies (for example, drone-derived outcrop models) to precisely resolve the metre to kilometre-scale three-dimensional stratigraphic architecture of wet aeolian Middle Jurassic Entrada Sandstone outcrops located at Rone Bailey Mesa near Moab, Utah, USA. Five facies are identified, primarily based on sedimentary fabrics, and are grouped into three associations named dune, sabkha and sand sheet. Statistical analyses of gamma-ray spectrometer and automated mineralogy data indicate a distinct mineralogical difference between dune (quartz-rich) and sabkha (more feldspathic) packages, suggesting that gamma-ray logs may be used to better predict facies distribution in the subsurface. Seven modelled super bounding surfaces are planar to undulatory, with no perceived spatial trends. Five modelled interdune migration surfaces are undulatory but exhibit an average 0.09° angle of climb roughly parallel to the palaeocurrent direction. Two modelled superposition surfaces are linear to sinuous in plan-view. Laterally discontinuous sabkha packages observed are interpreted to be remnants of closed, damp, interdune flats located between ca 8.5 to 17.0 m tall, sinuous, transverse bedforms or patches of such bedforms. Based on stratigraphic architecture interpretations, the Entrada Sandstone preserves signals of allogenic forcing and localized autogenic bedform cannibalization of the substrate. The findings of this study, some of which are not commonly recognized in wet aeolian facies models, enhance the understanding of erg evolution and can parameterize static models of aeolian reservoirs.  相似文献   
993.
In this contribution, we analyzed a pair of mafic samples collected from a recently identified shear zone and its proximal footwall from the Manicouagan Imbricate Zone (MIZ) of the central Grenville Province, Québec, Canada. Titanite petrochronology, metamorphic phase equilibria modelling, trace element thermometry, and electron backscattered diffraction data were used to define a Pressure-Temperature-time-Deformation path for the two samples. An interconnected dislocation network within titanite grains, as outlined with Kerneled Average Misorientation maps, are spatially correlated with variation in the U-Pb system but not with that observed for trace element These results suggest that the U-Pb system was decoupled from trace and rare earth elements and that deformation, rather than interface-coupled dissolution-precipitation reactions or re-crystallisation, was the main driver for this decoupling. In addition to highlighting a potential pitfall of titanite petrochronology, our P-T-t-D path reveals that ductile shear zones were active later than previously suggested within the MIZ.  相似文献   
994.
Hydropower is the dominant renewable energy source to date, providing over two-thirds of all renewable electricity globally. For countries with significant hydropower potential, the technology is expected to play a major role in the energy transition needed to meet nationally determined contributions (NDCs) for greenhouse gas (GHG) emission reductions as laid out in the Paris Agreement. For the Republic of Ecuador, large hydropower is currently considered as the main means for attaining energy security, reducing electricity prices and mitigating GHG emissions in the long-term. However, uncertainty around the impacts of climate change, investment cost overruns and restrictions to untapped resources may challenge the future deployment of hydropower and consequently impact decarbonization efforts for Ecuador’s power sector. To address these questions, a partial equilibrium energy system optimization model for Ecuador (TIMES-EC) is used to simulate alternative electricity capacity expansion scenarios up to 2050. Results show that the share of total electricity supplied by hydropower in Ecuador might vary significantly between 53% to 81% by 2050. Restricting large hydropower due to social-environmental constraints can cause a fourfold increase in cumulative emissions compared to NDC implied levels, while a 25% reduction of hydropower availability due to climate change would cause cumulative emissions to double. In comparison, a more diversified power system (although more expensive) which limits the share of large hydropower and natural gas in favour of other renewables could achieve the expected NDC emission levels. These insights underscore the critical importance of undertaking detailed whole energy system analyses to assess the long-term challenges for hydropower deployment and the trade-offs among power system configuration, system costs and expected GHG emissions in hydropower-dependent countries, states and territories.

Key policy insights

  • Ecuador’s hydropower-based NDC is highly vulnerable to the occurrence of a dry climate scenario and restrictions to deployment of large hydropower in the Amazon region.

  • Given Ecuador’s seasonal runoff pattern, fossil-fuel or renewable thermoelectric backup will always be required, whatever the amount of hydropower installed.

  • Ecuador’s NDC target for the power sector is achievable without the deployment of large hydropower infrastructure, through a more diversified portfolio with non-hydro renewables.

  相似文献   
995.
The Niger Delta is a classic example of a passive margin delta that has gravitationally deformed above an overpressured shale decollement. The outboard Niger Delta clastic wedge, including the Akata Formation overpressured shale decollement, is differentially thickened across relict oceanic basement steps formed at the Chain and Charcot fracture zones. In this study, five analogue models were applied to investigate the effects of a differentially thickened overpressured shale decollement across relict stepped basement on Niger Delta gravity-driven deformation. Gravity-driven delta deformation was simulated by allowing a lobate, layered sandpack to deform by gravity above a ductile polymer. A first series of experiments had a featureless, horizontal basement whereas a second series had differentially thickened polymer above Niger Delta-like basement steps. Two syn-kinematic sedimentation patterns were also tested. Surface strains were analysed using digital image correlation and key models were reconstructed in 3D. All five model deltas spread radially outward and formed plan view arcuate delta top grabens and arcuate delta toe folds. The arcuate structures were segmented by dip-oriented radial grabens and delta toe oblique extensional tear faults, which were formed by along-strike extensional strains during spreading. Basement steps partitioned delta toe gravity spreading into dual, divergent directions. Similarities between the analogue model structures and the Niger Delta strongly suggest a history of outward radial gravity spreading at the Niger Delta. The Niger Delta western lobe has potentially spread downdip more rapidly due to a thicker or more highly overpressured underlying Akata Fm. shale detachment. Faster western lobe spreading may have produced the Niger Delta toe ‘dual lobe’ geometry, perturbed up dip Niger Delta top growth fault patterns, and implies that western lobe toe thrusts have been very active.  相似文献   
996.
A model for the Zambezi River plume, the largest on the Indian Ocean coast of Africa, is presented and the results of experiments with different discharges and wind forcings are analysed. Although the river plays an important role in the southern African economy through power generation on large dams, artisanal fisheries, and frequent flooding events that impact greatly on local populations, the plume has not been well studied. Observations during the period 2004–2007, when the winds were mainly easterly or south-easterly, indicated that the plume waters can extend both downstream (equatorwards) and upstream (polewards) of the Zambezi Delta with a recirculating bulge near the river mouth. The model is constructed using the Regional Ocean Modeling System (ROMS), with a 40-km long, 3-km wide river discharging into a rectangular coastal ocean with a linearly sloping bottom. When the model is forced only by a constant river discharge of 1 000?m3 s?1 (typical of observed discharge amounts in summer), the Kelvin and Froude numbers for the resulting plume imply a ‘large-scale’ buoyant discharge with a coastal current that is close to being in geostrophic balance with the across-shore pressure gradient and a recirculating ageostrophic bulge near the mouth. The distributions of the bulge and plume waters are found to be relatively insensitive to the discharge amount. Under constant wind forcing, the plume distribution changes dramatically. Northerly and easterly winds produce the largest changes with the latter able to deflect the plume up to 180° due to Ekman drift. When sea breeze-like winds are imposed, accumulation of water in the bulge occurs with substantial spreading upstream. Stronger sea breezes lead to less downstream spreading of the plume than gentle winds. When the winds are mainly across-shore, Ekman drift dominates, but the dynamics become almost geostrophic when the winds are roughly aligned to the coast. These experiments suggest that the Zambezi River plume is sensitive to the winds on diurnal to synoptic time-scales.  相似文献   
997.
998.
Analogue models are used to investigate extension of a continental lithosphere weakened by asthenospheric melts percolating through the upper mantle, a process that has been hypothesised to control the opening of the Ligurian Tethys. Models were performed in a centrifuge apparatus and reproduced, by using materials such as sand and viscous mixtures, extension of 60-km thick, three-layer continental lithosphere floating above the asthenosphere. The percolated lithospheric mantle was assumed to be characterised by a rheological behaviour similar to that of the asthenosphere. Two sets of experiments investigated the influence on deformation of (1) the thickness of the percolated mantle and the associated strength contrast between the normal and weakened lithosphere, and (2) the lateral width of the weakened zone. Model results suggest that mantle percolation by asthenospheric melts is able to promote strong localised thinning of the continental lithosphere, provided that a significant thickness of the lithospheric mantle is weakened by migrating melts within a narrow region. Strain localisation is maximised for percolation of the whole lithospheric mantle and strong strength contrast between the normal and weakened lithosphere. Under these conditions, the thickness of the lithosphere may be reduced to less than 12 km in 3 Ma of extension. Conversely, localised thinning is strongly reduced if the thickness of the percolated zone is ≤1/3 of the thickness of the whole lithospheric mantle and/or the lithosphere is weakened over wide regions. Overall, model results support the working hypothesis that mantle percolation by asthenospheric melts is a controlling factor in the transition from distributed continental deformation to localised oceanic spreading.  相似文献   
999.
1000.
The paper presents an approach towards a medium-term (decades) modelling of water levels and currents in a shallow tidal sea by means of combined hydrodynamic and neural network models. The two-dimensional version of the hydrodynamic model Delft3D, forced with realistic water level and wind fields, is used to produce a two-year-database of water levels and currents in the study area. The linear principal component analysis (PCA) of the results is performed to reveal dominating spatial patterns in the analyzed dataset and to significantly reduce the dimensionality of the data. It is shown that only a few principal components (PCs) are necessary to reconstruct the data with high accuracy (over 95% of the original variance). Feed-forward neural networks are set up and trained to effectively simulate the leading PCs based on water level and wind speed and direction time series in a single, arbitrarily chosen point in the study area. Assuming that the spatial modes resulting from the PCA are ‘universally’ applicable to the data from time periods not modelled with Delft3D, the trained neural networks can be used to very effectively and reliably simulate temporal and spatial variability of water levels and currents in the study area. The approach is shown to be able to accurately reproduce statistical distribution of water levels and currents in various locations inside the study area and thus can be viewed as a reliable complementary tool e.g., for computationally expensive hydrodynamic modelling. Finally, a detailed analysis of the leading PCs is performed to estimate the role of tidal forcing and wind (including its seasonal and annual variability) in shaping the water level and current climate in the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号