首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3816篇
  免费   878篇
  国内免费   1357篇
测绘学   212篇
大气科学   2105篇
地球物理   770篇
地质学   709篇
海洋学   1191篇
天文学   285篇
综合类   160篇
自然地理   619篇
  2024年   26篇
  2023年   89篇
  2022年   152篇
  2021年   181篇
  2020年   185篇
  2019年   296篇
  2018年   187篇
  2017年   234篇
  2016年   205篇
  2015年   229篇
  2014年   292篇
  2013年   319篇
  2012年   299篇
  2011年   315篇
  2010年   229篇
  2009年   309篇
  2008年   246篇
  2007年   293篇
  2006年   259篇
  2005年   205篇
  2004年   176篇
  2003年   166篇
  2002年   177篇
  2001年   121篇
  2000年   118篇
  1999年   101篇
  1998年   95篇
  1997年   70篇
  1996年   101篇
  1995年   78篇
  1994年   57篇
  1993年   70篇
  1992年   45篇
  1991年   34篇
  1990年   19篇
  1989年   17篇
  1988年   14篇
  1987年   10篇
  1986年   4篇
  1985年   8篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1954年   2篇
排序方式: 共有6051条查询结果,搜索用时 203 毫秒
151.
利用非静力中尺度WRF模式模拟的台风Chanchu(0601)的输出资料,探讨了Chanchu减弱变性过程的强度及结构变化。分析结果表明:在台风Chanchu北移过程中,高层的暖心被破坏,强度快速减弱,眼壁对流发展高度降低,眼壁对流由对称结构演变为非对称,内核对流减弱。此减弱变性过程与惯性稳定度减小、垂直风切变增强、低层锋生等环境要素有关。惯性稳定度与台风强度变化一致,随着惯性稳定度降低,最大切向风减弱并不断外扩,Rossby变形半径增大从而潜热释放不集中难以维持台风强度,台风减弱;同时,内核区的高层暖心更易径向频散,从而高层暖心难以维持;环境的垂直风切变增强使台风的斜压性增强,台风垂直结构的倾斜度增大,对流发展高度降低;低层冷空气侵入台风中心趋于填塞,也利于台风强度减弱;台风登陆以后冷暖空气对比导致的锋生使得不稳定能量释放从而重新加强了Chanchu环流内的中低层对流活动,但较台风最强时刻而言对流强度减弱。总体减少的对流和降低的对流高度,导致潜热能释放减小,其向心输送也减少,不足以维持强暖心结构,最终使得台风减弱并变性。   相似文献   
152.
利用2015—2019年辽宁省发布的暴雨红色预警信号和1605个自动站的分钟级降水资料,统计暴雨红色预警信号和短时大暴雨年际变化和时空分布,分析暴雨红色预警信号的高分布区、易发时段。结果表明:2015—2017年辽宁省暴雨红色预警信号发布站数逐年递增,最大值出现在2017年,发布站数为147个;2015—2018年预警信号准确率提升,提前时间略减少,最低值为2018年,提前时间为19 min;2019年比2018年暴雨红色预警信号发布站数减少59个,提前时间增加29 min;暴雨红色预警信号的空间分布为东南部地区多、中部地区少;暴雨红色预警信号多在夜间发布;在辽宁省发布的50%以上的暴雨红色预警信号中,降水量达到预警发布标准的时间滞后于最大雨强出现时间90 min,最大雨强出现时间为暴雨红色预警信号发布的重要指标。为了达到防灾减灾的服务效果,发布暴雨红色预警信号时,应充分考虑最大雨强出现时间、发布时机、短时大暴雨高发区及地形的影响。  相似文献   
153.
分析了飞船主着陆场区1981—1999年1—4月和9—12月因冷空气而产生的偏北大风的过程中气候概况及其天气特征。通过分析发现:主着陆场区因冷空气引起的偏北大风以春季最频繁,秋、冬季最稀少;一天当中偏北大风以午后出现频率最大,午夜出现频率最少;对于不同季节的气压和温度,春、秋两季变化剧烈,冬季相对较小;在大风出现前24小时,主着陆场区的欧亚中高纬度大气环流以两槽一脊型、一槽一脊型、贝湖低压型为主;冷空气入侵前24小时,欧亚天气图上主着陆场区上游低层850hPa中高纬度有明显的冷中心,地面图场区上游冷高压中心的分布主要有3个区域:贝加尔湖西南至新疆、贝加尔湖到内蒙中北部、贝加尔湖西北部。大风前24小时在35~45°N、100~115°E等压线密集,等压线一般都在4根以上。  相似文献   
154.
J. I. PARK  V. P. SINGH 《水文研究》1996,10(9):1155-1171
An investigation into rainfall variability in time and space in the Nam River dam basin of Korea is made with the use of the coefficient of variation and the correlation coefficient. The Nam River dam basin is a small mountainous watershed where wind direction and orography are the dominant influences on the pattern and distribution of rainfall. Rainfall distribution was found to vary with elevation, position, wind direction and distance from a reference station. The results of this study can be used in the design of rain gauge network, hydrological forecasting and for other applications in the Nam River dam basin.  相似文献   
155.
风水复合侵蚀研究述评   总被引:13,自引:1,他引:12  
宋阳  刘连友  严平 《地理学报》2006,61(1):77-88
风水复合侵蚀或风水交互作用是干旱、半干旱地区常见的侵蚀过程。这种风力与流水对同一侵蚀对象 (区域) 的共同作用或交替作用塑造了风蚀水蚀交错区特有的侵蚀地貌景观。作为一个相互联系、影响的复杂系统,风水复合侵蚀具有明显的时空分布特征,其侵蚀过程可以划分为古代过程与现代过程。由于以往的风蚀和水蚀研究相互独立,风水复合侵蚀的研究起步较晚。在研究中存在着尺度转化与研究方法不成熟等问题。对风水复合侵蚀的机理与防治以及土壤复合可蚀性的研究都将成为今后研究中的重点与难点。  相似文献   
156.
基于模糊综合评判的动态路径行程时间预测模型   总被引:3,自引:0,他引:3  
针对城市交通路网的复杂性和不确定性,提出一种基于模糊综合评判的动态行程时间预测模型,将总行程时间分为行驶时间和交通延误时间两部分,分别介绍这两部分时间的预测模型,并利用该模型对一组模拟道路信息和路况信息进行实际预测,对预测结果进行比较和分析。研究表明该模型算法简捷实用,预测结果精度较高。  相似文献   
157.
据湖北省神农架天鹅洞一支石笋11个230Th年龄和254个δ18O数据,建立了28.5~22.0kaB.P.同位素分辨率平均约30a的东亚季风气候变化序列。该石笋δ18O曲线与南京葫芦洞石笋记录在重叠时段基本一致,说明本区石笋δ18O反映了区域性东亚季风经向环流特征。在24.3kaB.P.左右,石笋δ18O明显正偏,持续时间近1ka,指示一次显著的弱夏季风事件,与北大西洋倒数第二次冰漂碎屑事件(Heinrich2)同步发生,可视为东亚季风气候对H2事件的响应。高分辨率的δ18O序列揭示了H2事件的内部结构特征:(1)事件发生的突变性,石笋δ18O记录指示事件发生时在100a内δ18O从-8.59‰迅速正偏为-6.75‰,振幅达1.84‰;(2)事件结束的渐变性,δ18O正偏到-6.75‰后便以阶梯状缓慢负偏到-8.86‰至事件结束,持续时间近900a。这一过程与末次盛冰期东亚季风气候H1事件表现的季风强弱转换方式基本一致,说明末次盛冰期东亚季风气候H型事件具有共同的内部结构特征。研究表明,末次盛冰期东亚季风气候H事件的突变可能受北大西洋驱动并经青藏高原冰川变化放大。  相似文献   
158.
Boundary-layer wind structure in a landfalling tropical cyclone   总被引:1,自引:0,他引:1  
In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.  相似文献   
159.
关于暴时电离层电流分布的南北半球不对称性   总被引:4,自引:1,他引:3       下载免费PDF全文
采用国际上广泛认可的高层大气和电离层经验模式提供的各种参数, 通过电离层电流连续方程, 计算出强磁暴条件下6月至日和12月至日内, 磁纬±72°和磁地方时00:00~24:00之间电离层电场、电流等的分布. 计算中考虑了地磁和地理坐标间的偏离; 除中性风场感生的发电机效应外, 还包含了磁层耦合(极盖区边界的晨昏电场和二区场向电流)的驱动外源. 结果表明, 6月至日时, 磁层扰动自极光区向中低纬的穿透情况在南、北半球内基本接近, 北半球内略强; 但12月至日时, 呈现明显的不对称性, 南半球的电流穿透远强于北半球, 而电场的穿透则是在北半球更强. 无论南北半球, 在中高纬地区, 午夜至黎明时段出现较强的东向电场分量, 其[WTHX]E×B[WTBZ]的向上漂移效应, 正是解释我们以往不少研究现象中所期盼的物理机制.  相似文献   
160.
河西走廊风速变化及风能资源研究   总被引:24,自引:9,他引:15  
王毅荣  张存杰 《高原气象》2006,25(6):1196-1202
利用河西走廊地区25年风速气候资料和风塔周年资料,研究了该区域近地面风速及风能的演变和分布。结果表明:河西走廊绿洲内风速下降十分明显,而其它高山站风速比较稳定,没有明显的减少趋势;风速变化具有周期振荡特点;垂直风速差由近地面向上减小,高层风速极大(小)值滞后于低层;风速随高度按自然对数规律增大,风能距地面8 m层内随高度变化迅速;该地区4~12 m/s风居多,是风能的主要贡献者;2~4月风速最大,1,5月最小;该地区风能丰富,10~70 m层内年风能储量在2200 khW/m2以上。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号