首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1621篇
  免费   313篇
  国内免费   546篇
测绘学   29篇
大气科学   653篇
地球物理   565篇
地质学   371篇
海洋学   472篇
天文学   71篇
综合类   62篇
自然地理   257篇
  2024年   10篇
  2023年   16篇
  2022年   35篇
  2021年   54篇
  2020年   83篇
  2019年   93篇
  2018年   69篇
  2017年   112篇
  2016年   87篇
  2015年   97篇
  2014年   136篇
  2013年   185篇
  2012年   105篇
  2011年   104篇
  2010年   88篇
  2009年   141篇
  2008年   120篇
  2007年   115篇
  2006年   113篇
  2005年   95篇
  2004年   96篇
  2003年   72篇
  2002年   67篇
  2001年   54篇
  2000年   59篇
  1999年   44篇
  1998年   53篇
  1997年   36篇
  1996年   31篇
  1995年   15篇
  1994年   24篇
  1993年   16篇
  1992年   9篇
  1991年   8篇
  1990年   5篇
  1989年   2篇
  1988年   11篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有2480条查询结果,搜索用时 46 毫秒
831.
Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Yellow Sea Cold Water Mass). The spatial and temporal variations of zooplankton species composition, biomass, abundance and biodiversity were examined. A total of 122 zooplankton species and 30 pelagic larvae were identified in the four cruises. Calanus sinicus and Aidanosagitta crassa were the most dominant species, and Themisto gaudichaudi and Euphausia pacifica were widely distributed in the HSCWM area. The spatial patterns of non-gelatinous zooplankton (removing the high water content groups) were similar to those of the total zooplankton biomass in autumn, but different significantly in the other three seasons. The seasonal means of zooplankton biomass in spring and summer were much higher than that in autumn and winter. The total zooplankton abundance averaged 283.5 ind./m~3 in spring (highest), 192.5 ind./m~3 in summer, 165.5 ind./m~3 in autumn and 65.9 ind./m~3 in winter (lowest), and the non-gelatinous groups contributed the most total abundance. Correlation analysis suggests that the non-gelatinous zooplankton biomass and abundance had a significant positive correlation in the whole year, but the relationship was insignificant between the total zooplankton biomass and abundance in spring and summer. The diversity index H of zooplankton community averaged 1.88 in this study, which was somewhat higher than historical results. Relatively low diversity in summer was related to the high dominance of Calanus sinicus, probably due to the strongest effect of the HSCWM in this season.  相似文献   
832.
In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric, oceanic and land factors. The findings include: 1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastern China, Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal, strengthening in the La Ni a phase and weakening in the El Ni o phase. This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.  相似文献   
833.
ENSO cycle and climate anomaly in China   总被引:2,自引:0,他引:2  
The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the El Ni o-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of El Ni o, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of El Ni o, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Ni a event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.  相似文献   
834.
Effective river management strategies require an understanding of how fluvial processes vary both spatially and temporally. Here, we examine the natural range of variability in the Conejos River Valley, southern Colorado, through documentation of terrace morphostratigraphic and sedimentological characteristics as well as through investigation of sediment contributions from headwaters, hillslopes and tributary streams. Additionally, soil development and radiocarbon ages, together with local and regional paleoclimate reconstructions, were used to infer the range of processes acting in this system. Since de‐glaciation, the Conejos River has fluctuated between episodes of bedrock strath formation, aggradation and vertical incision. Morphostratigraphic relationships, soil development and radiocarbon ages enable us to propose a chronology for periods of alluvial deposition (around 8·9–7·6 ka, 5·5 ka and from 3·5 to 1·1 ka), separated by intervals of fluvial incision. We infer potential forcing mechanisms by utilizing multiple working hypotheses. Specifically, we discuss the potential for increases in sediment supply during periods of (1) para‐glacial adjustment, (2) climatic cooling, (3) increased frequency of climate change and (4) increased fire frequency or severity. We also consider the effects of changes in stream discharge and extreme storm occurrence. We conclude that combinations of these processes, operating at different times, have contributed to sediment mobilization since de‐glaciation. Stream and landform morphology also varies longitudinally due to the influence of remnant glacial topography. In particular, valley bottom overdeepening at tributary junctions has resulted in incision and strath formation into unlithified glacial deposits (i.e. fill‐cut terraces) rather than bedrock in some reaches. Overall, the Conejos fluvial system has varied significantly both temporally and spatially since de‐glaciation and appears to be sensitive to changes in sediment supply related to Holocene scale climate fluctuations. This natural range of variability must therefore be a key consideration in any future stream management policies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
835.
Total organic carbon (TOC) content, total nitrogen (TN) content, stable nitrogen isotope (δ15N) and stable organic carbon isotope (δ13Corg) ratios were continuously analysed on a high resolution sediment profile from Lake Sihailongwan (SHL), covering the time span between 16,500 and 9,500 years BP. Strong variations of the investigated proxy parameters are attributed to great climatic fluctuations during the investigated time period. Variations in organic carbon isotope ratios and the ratio of TOC/TN (C/N ratio) are discussed with respect to changing proportions of different organic matter (OM) sources to bulk sedimentary OM. Phases of high TOC content, high TN content, depleted δ13Corg values and high δ15N values are interpreted as times with increased productivity of lacustrine algae in relation to input of terrigenous organic matter. Two distinct phases of enriched nitrogen isotope ratios from 14,200 to 13,700 and 11,550 to 11,050 years BP point towards a reduced phytoplankton discrimination against 15N due to a diminished dissolved inorganic nitrogen pool. The combination of geochemical (TOC, TN, C/N ratio) and isotopic (δ13Corg, δ15N) proxy parameters points to a division of climate development into four stages. A cold and dry stage before 14,200 years BP, a warm optimum stage with high phytoplankton productivity from 14,200 to 12,450 BP, a colder and drier stage from 12,450 to 11,600 BP and a stage of climatic amelioration with high variability in TOC and TN contents after 11,600 BP. These results are discussed in relation to monsoon variability and Northern Hemisphere climate development of the late glacial.  相似文献   
836.
东亚夏季风建立前青藏高原地气温差变化特征   总被引:6,自引:1,他引:5  
利用青藏高原地区112个站1980~2001年和部分站点1960~2000年的气温、地温资料,采用经验正交EOF和旋转经验正交REOF等方法,对东亚夏季风爆发前青藏高原地气温差的变化特征进行分析,并对其与东亚夏季风之间的联系进行了分析.结果表明,青藏高原地气温差一般超前气温、地温1个月达到全年最大值,比中国中东部同纬度...  相似文献   
837.
We argue that it is important to expand the consideration of climate in the context of provision of ecosystem services in drylands. In addition to climate change, it is necessary to include climate variability on timescales relevant to human and ecological considerations, namely interannual to decadal and multidecadal. The period of global instrumental record (about a century and a half long at the very most) is neither an adequate nor an unbiased sample of the range and character of natural climate variability that might be expected with the climate system configured as it is now. We base this on evidence from W. N. America, where there has recently been a major multi-year drought, of a scale and intensity that has occurred several times in the last 2000 years, and on attempts to provide explanations of these phenomena based on physical climatology. Ensembles of runs of forced climate system models suggest the next 50 years will bring much more extensive and intense drought in the continental interior of North America. The trajectory followed by the supply of ecosystem services will be contingent not only on the genotypes available and the antecedent soil, economic and social conditions but also on climate variability and change. The critical features of climate on which patterns of plant growth and water supply depend may vary sharply during and between human generations, resulting in very different experiences and hence, expectations.  相似文献   
838.
The importance of orbital forcing and ocean impact on the Asian summer monsoon in the Holocene is investigated by comparing simulations with a fully coupled ocean–atmosphere general circulation model (FOAM) and with the atmospheric component of this model (FSSTAM) forced with prescribed modern sea-surface temperatures (SSTs). The results show: (1) the ocean amplifies the orbitally-induced increase in African monsoon precipitation, makes somewhat increase in southern India and damps the increase over the southeastern China. (2) The ocean could change the spatial distribution and local intensity of the orbitally-induced latitudinal atmospheric oscillation over the southeastern China and the subtropical western Pacific Ocean. (3) The orbital forcing mostly enhances the Asian summer precipitation in the FOAM and FSSTAM simulations. However, the ocean reduces the orbitally-induced summer precipitation and postpones the time of summer monsoon onset over the Asian monsoon region. (4) The orbital forcing considerably enhances the intensity of upper divergence, which is amplified by ocean further, over the eastern hemisphere. But the divergence is weaker in the FOAM simulations than in the FSSTAM simulations when the orbital forcing is fixed. (5) The orbital forcing can enhance the amplitude of precipitation variability over the subtropical Africa, the southeastern China and northwestern China, inversely, reduce it over central India and North China in the FOAM and FSSTAM simulations. The ocean obviously reduces the amplitude of precipitation variability over most of the Asian monsoon regions in the fixed orbital forcing simulations. (6) The areas characterized by increased summer precipitation in the long-term mean are mostly characterized by increased amplitude of short-term variability, whereas regions characterized by decreased precipitation are primarily characterized by decreased amplitude of short-term variability. However, the influences of orbital forcing or dynamical ocean on regional climate depend on the model.  相似文献   
839.
The ocean temperature field off the north‐east coast of New Zealand is studied to quantify the annual cycle and reveal the intra‐ and inter‐annual variability. The data used are repeat expendable bathythermograph (XBT) sections between Auckland and either Suva or Honolulu which have been collected quarterly since 1986. These sections give temperature measurements between the surface and 800 m and Auckland and 30°S from 1986 to August 1999. The mean and annual cycle are compared with those from the NOAA World Ocean Atlas (WOA98). The results are similar; however WOA98 lacks the horizontal resolution to fully discern the East Auckland Current and North Cape Eddy, while the XBT analysis lacks the temporal resolution to discern higher frequency intra‐annual signals. The temperature variability in the mixed layer is dominated by the annual cycle, which accounts for 80–90% of the variance. The amplitude of the annual cycle diminishes rapidly with depth, from 2.8°C at the surface, to c. 0.1°C at 180 m. The phase of the annual cycle is retarded with depth, with peak temperatures occurring in February at the surface and in June/July at 180 m. Removing the annual cycle from the time series reveals the more subtle inter‐ and intra‐annual variability. This variability is of the order of 1°C in the upper 50 m, decreasing to 0.3°C at 400–500 m. The surface layer was cold between 1991 and 1994 (c. 0.7°C cooler than average), and 0.7°C warmer than average in 1999. The deeper ocean shows a different signal, being up to 0.3°C cooler in 1990–92, 0.3°C warmer in 1998, and c. 0.2°C warmer than average in 1999. The inter‐annual mixed layer variability is highly correlated with the Southern Oscillation Index and also with inter‐annual terrestrial air temperature and wind measurements from northern New Zealand. In contrast, at higher intra‐annual frequencies, the mixed layer variability is not correlated with air and wind measurements. At these higher frequencies, the air temperature is better correlated with the sea surface temperature (SST) than with the bulk mixed layer temperature.  相似文献   
840.
At‐sea sampling is a common approach used by fisheries scientists to assess changes in fished populations. Traditional sampling programmes focus on short intensive sampling periods by fisheries personnel, although there has been a move to increase temporal sampling frequency within a fishing season by using harvesters. To determine the suitability of these two options, we compared the precision of estimates obtained for the American lobster (Homarus americanus) fishery in the southern Gulf of St. Lawrence, Canada. The sampling variance estimation for the mean catch‐per‐unit‐effort (CPUE) was based on a three‐stage sampling design with days as the primary unit, and buoy and trap as secondary and third stage units, respectively. Using the estimated variance components to predict and compare the variance of the mean CPUE for different at‐sea sampling designs, we show that it would be more efficient to sample a few traps (at least 3) every day for the entire fishing season than the traditional at‐sea sampling of the entire fishing gear twice or three times in a season by scientific personnel. Designing a harvester‐based at‐sea sampling programme could be an efficient approach for reducing costs while gathering essential fishery data, improving dialogue between the industry and scientists, and increasing harvesters’ participation in managing the resource.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号