首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1662篇
  免费   286篇
  国内免费   556篇
测绘学   29篇
大气科学   657篇
地球物理   570篇
地质学   380篇
海洋学   478篇
天文学   71篇
综合类   62篇
自然地理   257篇
  2024年   13篇
  2023年   23篇
  2022年   38篇
  2021年   57篇
  2020年   84篇
  2019年   93篇
  2018年   69篇
  2017年   112篇
  2016年   88篇
  2015年   99篇
  2014年   136篇
  2013年   185篇
  2012年   106篇
  2011年   104篇
  2010年   89篇
  2009年   141篇
  2008年   120篇
  2007年   115篇
  2006年   113篇
  2005年   95篇
  2004年   96篇
  2003年   72篇
  2002年   67篇
  2001年   54篇
  2000年   59篇
  1999年   44篇
  1998年   53篇
  1997年   36篇
  1996年   31篇
  1995年   15篇
  1994年   24篇
  1993年   16篇
  1992年   11篇
  1991年   8篇
  1990年   5篇
  1989年   2篇
  1988年   11篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有2504条查询结果,搜索用时 15 毫秒
791.
ABSTRACT

The temporal variation and trends of annual rainfall distribution in Benin were examined using data from 1940 to 2015 at six meteorological stations and three raingauges stationed throughout the country. The nonparametric modified Mann-Kendal (MK) and Levene tests were applied to detect trends and heteroscedasticity, respectively. For six of the time series, no significant trends were detected. A Bayesian multiple change points detection approach was applied to the rainfall time series, and most (six of nine) exhibited abrupt change points, corresponding to the alternation between wet (before 1968 and after 1990) and dry (1969–1990) periods. No significant trends or breakpoints and changes in the variance were observed for the spatial average rainfall time series. Seven modified MK trend tests were applied; the trends are affected by the selected MK method and rainfall statistics. Oceanic and/or atmospheric influences on the rainfall in Benin were examined by investigating the correlation between the precipitation time series and several indices. Negative seasonal correlations were determined for the North Atlantic Oscillation, Pacific Decadal Oscillation and Niño3, while positive seasonal correlations were observed for the Southern Oscillation, Antarctic Oscillation and Dipole Mode Index.  相似文献   
792.
During the past 50 years, many research efforts have been invested in understanding soil erosion process and development of erosion prediction models at various scales. This paper briefly introduces the erosion process and prediction model development in the USA. Especially, this paper focuses on discussing potential impacts of the erosion process on erosion model development, and future directions of the soil erosion process research and process- based model development. 1 DEVELOPMENT O…  相似文献   
793.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
794.
Depending on season, rainfall characteristics and tree species, interception amounts to 15–50% of total precipitation in a forest under temperate climates. Many studies have investigated the importance of interception of different tree species in all kinds of different climates. Often authors merely determine interception storage capacity of that specific species and the considered event, and only sometimes a distinction is made between foliated and non‐foliated trees. However, interception is highly variable in time and space. First, since potential evaporation is higher in summer, but secondly because the storage capacity has a seasonal pattern. Besides weather characteristics, such as wind and rain intensity, snow causes large variations in the maximum storage capacity. In an experimental beech plot in Luxembourg, we found storage capacity of canopy interception to show a clear seasonal pattern varying from 0·1 mm in winter to 1·2 mm in summer. The capacity of the forest floor appears to be rather constant over time at 1·8 mm. Both have a standard deviation as high as ± 100%. However, the process is not sensitive to this variability resulting only in 11% variation of evaporation estimates. Hence, the number of raindays and the potential evaporation are stronger driving factors on interception. Furthermore, the spatial correlation of the throughfall and infiltration has been investigated with semi‐variograms and time stability plots. Within 6–7 m distance, throughfall and infiltration are correlated and the general persistence is rather weak. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
795.
The horizontal accuracy of topographic data represented by digital elevation model (DEM) resolution brings about uncertainties in landscape process modeling with raster GIS. This paper presents a study on the effect of topographic variability on cell-based empirical estimation of soil loss and sediment transport. An original DEM of 10m resolution for a case watershed was re-sampled to three realizations of higher grid sizes for a comparative examination. Equations based on the USLE are applied to the watershed to calculate soil loss from each cell and total sediment transport to streams. The study found that the calculated total soil loss from the watershed decreases with the increasing DEM resolution with a linear correlation as spatial variability is reduced by cell aggregation. The USLE topographic factors (LS) extracted from applied DEMs represent spatial variability, and determine the estimations as shown in the modeling results. The commonly used USGS 30m DEM appears to be able to reflect essential spatial variability and suitable for the empirical estimation. The appropriateness of a DEM resolution is dependent upon specific landscape characteristics, applied model and its parameterization. This work attempts to provide a general framework for the research in the DEM-based empirical modeling.  相似文献   
796.
797.
Spatial variability of near‐fault strong motions recorded by the US Geological Survey Parkfield Seismograph Array (UPSAR) during the 2004 Parkfield (California) earthquake is investigated. Behavior of the lagged coherency for two horizontal and the vertical components is analyzed by separately examining the decay of coherency with frequency and distance. Assumptions, approximations, and challenges that are involved in estimation of the coherency from recorded data are presented in detail. Comparison of the UPSAR coherency estimates with coherency models that are commonly used in engineering practice sheds light on the advantages and limitations of different approaches to modeling the coherency, as well as on similarities and differences in the spatial variability exhibited by seismic ground motion arrays at different sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
798.
B. W. WEBB  Y. ZHANG 《水文研究》1997,11(1):79-101
Detailed hydrometeorological measurements have been used to establish the components of the river heat budget for 495 days covering 18 study periods and 11 study reaches in the Exe Basin, Devon, UK. Averaging the results across the whole data-set indicates that net radiation, friction, sensible heat transfer, condensation and bed conduction contributed 56.0, 22.2, 13.2, 5.8 and 2.8%, respectively, to the non-advective energy gains, whereas net radiation, evaporation, sensible heat exchange and bed conduction accounted for 48.6, 30.4, 10.6 and 10.4%, respectively, of the non-advective heat losses. Precipitation falling on the river channel had little impact on the river heat budgets, but energy advected in groundwater accounted for an average 5% of the heat storage in the river. The magnitude and importance of the river heat budget components were found to be variable in space and time. The influence of channel morphology, valley topography, riparian vegetation, substratum nature and hydrological conditions, especially the effects of river regulation, promoted inter-reach variability in the make up of the heat budget and caused significant differences in energy fluxes at a local scale. Heat budget components also exhibited considerable differences between seasons and varied from day to day for individual reaches. © 1997 by John Wiley & Sons, Ltd.  相似文献   
799.
This paper analyses the significance of the entropy concept in the topography parameterization within the model TOPMODEL proposed by Beven and Kirkby (1979), by means of the hydrological behaviour of an experimental basin in southern Italy. For a significant number of flood events recorded at the basin outlet, the performance of TOPMODEL for different spatial distributions of the topographic index, ln(a/tan β), has been observed. Performance is related to the information content estimated as an entropy measure, corresponding to each of the spatial distributions of the topographic index, with the aim of identifying the procedures most suitable to represent the hydrological process of rainfall–runoff. The results obtained have shown that for flood events corresponding to brief, heavy precipitation, some procedures provide better performances than others. Moreover, these improvements are justified by greater information content in the corresponding spatial distributions of the topographic index. Finally, TOPMODEL performances for some procedures have been analysed, varying the resolution scale of the topographic index. For analogous hydrological performances, scale change produced variations in some of the subsurface hydraulic parameters. These variations were proportional to a spatial variability measure of the topographic index distribution, derived from the corresponding information content. © 1997 John Wiley & Sons, Ltd.  相似文献   
800.
Based on gridded Argo profile data from January 2004 to December 2010, together with the P-vector inverse method, the three-dimensional structure, annual and inter-annual variations in volume of the Western Pacific Warm Pool(WPWP) are studied. The variations of latitudinal and longitudinal warm water flowing into and out of the WPWP and the probable mechanism of warm water maintenance are also discussed. From the surface to the bottom, climatic WPWP tilts southward and its area decreases. The maximum depth could extend to 120 m, such that its volume could attain 1.86×1015 m3. Annual variation of the WPWP volume shows two obvious peaks that occur in June and October, whereas its inter-annual variations are related to ENSO events. Based on a climatic perspective, the warm water flowing latitudinally into the pool is about 52 Sv, which is mainly through upper layers and via the eastern boundary. Latitudinally, warm water flowing outward is about 49 Sv, and this is mainly through lower layers and via the western boundary. In contrast, along the latitude, warm water flowing into and out of the pool is about 28 Sv and 23 Sv, respectively. Annual and inter-annual variations of the net transportation of the warm water demonstrate that the WPWP mainly loses warm water in the west-east direction, whereas it receives warm water from the north-south direction. The annual variation of the volume of WPWP is highly related to the annual variation of the net warm water transportation, however, they are not closely related on inter-annual time scale. On the inter-annual time scale, influences of ENSO events on the net warm water transportation in the north-south direction are much more than that in the west-east direction. Although there are some limitations and simplifications when using the P-vector method, it could still help improve our understanding of the WPWP, especially regarding the sources of the warm water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号