首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1722篇
  免费   131篇
  国内免费   216篇
测绘学   26篇
大气科学   121篇
地球物理   90篇
地质学   530篇
海洋学   64篇
天文学   1104篇
综合类   43篇
自然地理   91篇
  2024年   11篇
  2023年   10篇
  2022年   35篇
  2021年   45篇
  2020年   33篇
  2019年   39篇
  2018年   17篇
  2017年   31篇
  2016年   20篇
  2015年   37篇
  2014年   53篇
  2013年   48篇
  2012年   39篇
  2011年   102篇
  2010年   82篇
  2009年   161篇
  2008年   136篇
  2007年   183篇
  2006年   156篇
  2005年   145篇
  2004年   132篇
  2003年   112篇
  2002年   70篇
  2001年   52篇
  2000年   52篇
  1999年   68篇
  1998年   43篇
  1997年   15篇
  1996年   12篇
  1995年   26篇
  1994年   44篇
  1993年   11篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   5篇
  1988年   7篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1981年   1篇
  1978年   3篇
排序方式: 共有2069条查询结果,搜索用时 15 毫秒
291.
We report here the first detection of mono-deuterated acetylene (acetylene-d1, C2HD) in Titan's atmosphere from the presence of two of its emission bands at 678 and 519 cm−1 as observed in CIRS spectral averages of nadir and limb observations taken between July 2004 and mid-2007. By using new laboratory spectra for this molecule, we were able to derive its abundance at different locations over Titan's disk. We find the C2HD value () to be roughly constant with latitude from the South to about 45° N and then to increase slightly in the North, as is the case for C2H2. Fitting the 678 cm−1ν5 band simultaneously with the nearby C2H2 729 cm−1ν5 band, allows us to infer a D/H ratio in acetylene on Titan with an average of the modal values of 2.09±0.45×10−4 from the nadir observations, the uncertainties being mainly due to the vertical profile used for the fit of the acetylene band. Although still subject to significant uncertainty, this D/H ratio appears to be significantly larger than the one derived in methane from the CH3D band (upper limit of 1.5×10−4; Bézard, B., Nixon, C.A., Kleiner, I., Jennings, D.E., 2007. Icarus, 191, 397-400; Coustenis, A., Achterberg, R., Conrath, B., Jennings, D., Marten, A., Gautier, D., Bjoraker, G., Nixon, C., Romani, P., Carlson, R., Flasar, M., Samuelson, R.E., Teanby, N., Irwin, P., Bézard, B., Orton, G., Kunde, V., Abbas, M., Courtin, R., Fouchet, Th., Hubert, A., Lellouch, E., Mondellini, J., Taylor, F.W., Vinatier, S., 2007. Icarus 189, 35-62). From the analysis of limb data we infer D/H values of (at 54° S), (at 15° S), (at 54° N) and (at 80° N), which average to a mean value of 1.63±0.27×10−4.  相似文献   
292.
We present the first spectra of Neptune taken with the Spitzer Space Telescope, highlighting the high-sensitivity, moderate-resolution 10-20 μm (500-1000 cm−1) spectra. We report the discovery of methylacetylene (CH3C2H) and diacetylene (C4H2) with derived 0.1-mbar volume mixing ratios of (1.2±0.1)×10−10 and (3±1)×10−12 respectively.  相似文献   
293.
积雪是地球上反射率较高的自然表面,对于中高纬度地区的水文和能量收支平衡发挥着重要作用。表层积雪中的黑碳和雪粒径变化可以显著影响积雪反照率,造成积雪对太阳辐射吸收的变化,进而对区域气候变化和水文循环产生反馈作用。利用遥感技术对季节性积雪表层黑碳和雪粒径进行定量评估,可以获取时空上连续系统的雪表黑碳浓度和雪粒径变化情况,这也是许多气候和水文模型的输入因子。以中国主要季节性积雪区北疆为研究区,基于MODIS(Moderate Resolution Imaging Spectroradiometer)数据的3(0.47 μm)、2(0.86 μm)和5(1.24 μm)波段,采用SGSP(Snow Grain Size and Pollution Amount)算法反演2000-2018年积雪期的雪表黑碳浓度和雪粒径,并结合地面观测数据对于反演结果进行了精度验证,综合分析北疆雪表黑碳浓度和雪粒径时空变化趋势。结果显示,SGSP算法能够同时反演雪表黑碳浓度和雪粒径,并且验证结果表明纯雪像元上反演结果具有较好的精度;2000-2018年北疆雪表年均黑碳浓度和年均雪粒径都随时间变化呈现微弱下降趋势;受地理位置和局部污染源的影响,北疆积雪黑碳浓度空间分布复杂,天山北坡经济带平均黑碳浓度最高,伊犁地区平均黑碳浓度最低,雪粒径的空间分布显示塔城地区平均雪粒径最大,伊犁地区最小。  相似文献   
294.
基于人工降雨试验的淮北地区产流产沙差异性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对淮北地区水土流失问题,利用野外人工模拟降雨试验,分析了不同雨强(40mm/h、60mm/h和80mm/h)和坡度(5°、10°和15°)条件下砂姜黑土和黄潮土产流产沙差异。结果表明:砂姜黑土初始产流时间长,产流总量小。坡面出现细沟时,砂姜黑土初始含沙量随时间变化有减小趋势,最终趋于稳定,而黄潮土含沙量呈波动变化;60mm/h、80mm/h雨强10°坡砂姜黑土产沙总量大于黄潮土,其他情况黄潮土产沙总量大于砂姜黑土,黄潮土土壤侵蚀严重。砂姜黑土表面细沟发育密度大,主要在坡面中下部,为相互连通的树枝状结构,而黄潮土表面细沟发育密度小,形成沟壑。两种土壤产流总量、产沙总量与坡度、雨强分别呈多元线性函数、多元幂函数关系,雨强对坡面产流产沙总量的影响大于坡度。  相似文献   
295.
This study characterizes the black carbon in Agra, India home to the Taj Mahal—and situated in the Indo-Gangetic basin.The mean black carbon concentration is 9.5 μg m~(-3)and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter(December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate(1–2 m s~(-1)) wind speed, as compared to calm or turbulent atmospheric conditions.  相似文献   
296.
A series of natural omphacites from a wide range of P, T occurrences were investigated by electron microprobe (EMP), infrared (IR)-, Mössbauer (MS)- and optical spectroscopy in the UV/VIS spectral range (UV/VIS), secondary ion mass spectrometry (SIMS) and single crystal structure refinement by X-ray diffraction (XRD) to study the influence of hydrogen loss on valence state and site occupancies of iron. In accordance with literature data we found Fe2+ at M1 as well as at M2, and in a first approach assigned Fe3+ to M1, as indicated by MS and XRD results. Hydrogen content of three of our omphacite samples were measured by SIMS. In combination with IR spectroscopy we determined an absorption coefficient: ε i,tot = 65,000 ± 3,000 lmolH2O ?1 cm?2. Using this new ε i,tot value, we obtained water concentrations ranging from 60 to 700 ppm H2O (by weight). Hydrogen loss was simulated by stepwise heating the most water rich samples in air up to 800°C. After heat treatment the samples were analyzed again by IR, MS, UV/VIS, and XRD. Depending on the type of the OH defect, the grade of dehydration with increasing temperature is significantly different. In samples relatively poor in Fe3+ (<0.1 Fe3+ pfu), hydrogen associated with vacancies at M2 (OH bands around 3,450 cm?1) starts to leave the structure at about 550°C and is completely gone at 780°C. Hydrogen associated with Al3+ at the tetrahedral site (OH bands around 3,525 cm?1, Koch-Müller et al., Am Mineral, 89:921–931, 2004) remains completely unaffected by heat treatment up to 700°C. But all hydrogen vanished at about 775°C. However, this is different for a more Fe3+-rich sample (0.2 Fe3+ pfu). Its IR spectrum is characterized by a very intense OH band at 3,515 cm?1 plus shoulder at 3,450 cm?1. We assign this intense high-energy band to vibrations of an OH dipole associated with Fe3+ at M1 and a vacancy either at M1 or M2. OH release during heating is positively correlated with decrease in Fe2+ and combined with increase in Fe3+. That dehydration is correlated with oxidation of Fe2+ is indirectly confirmed by annealing of one sample in a gas mixing furnace at 700°C under reducing conditions keeping almost constant OH? content and giving no indication of Fe2+-oxidation. Obtained data indicate that in samples with a relatively high concentration of Fe2+ at M2 and low-water concentrations, i.e., at a ratio of Fe2+ M2/H > 10 dehydration occurs by iron oxidation of Fe2+ exclusively at the M2 site following the reaction: \( {\left[ {{\text{Fe}}^{{{\text{2 + [ M2]}}}}{\text{OH}}^{ - } } \right]} = {\left[ {{\text{Fe}}^{{{\text{3 + [ M2]}}}} {\text{O}}^{{{\text{2}} - }} } \right]} + {\text{1/2}}\;{\text{H}}_{{\text{2}}} \uparrow . \) In samples having relatively low concentration of Fe2+ at M2 but high-water concentrations, i.e., ratio of Fe2+ M2/H < 5.0 dehydration occurs through oxidation of Fe2+ at M1.  相似文献   
297.
298.
299.
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号