全文获取类型
收费全文 | 52篇 |
免费 | 1篇 |
国内免费 | 9篇 |
专业分类
大气科学 | 24篇 |
地球物理 | 3篇 |
地质学 | 18篇 |
海洋学 | 3篇 |
天文学 | 8篇 |
综合类 | 1篇 |
自然地理 | 5篇 |
出版年
2022年 | 2篇 |
2020年 | 7篇 |
2019年 | 1篇 |
2018年 | 3篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 4篇 |
2013年 | 8篇 |
2012年 | 5篇 |
2011年 | 2篇 |
2010年 | 1篇 |
2009年 | 2篇 |
2008年 | 4篇 |
2007年 | 2篇 |
2006年 | 1篇 |
2005年 | 5篇 |
2004年 | 4篇 |
2003年 | 1篇 |
2002年 | 1篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
排序方式: 共有62条查询结果,搜索用时 15 毫秒
51.
Grant M.Young 《地学前缘(英文版)》2015,6(4)
The second half of the Ediacaran period began with a large impact e the Acraman impact in South Australia, which was accompanied by a negative d13Ccarb anomaly and an extinction-radiation event involvi... 相似文献
52.
G. A. McKay 《Natural Hazards》1991,4(4):353-372
Concern over the effects of human activities on this planet and on it's ecosystems is widespread. Changes wrought within the atmosphere are of particular concern because they have pervasive social, environmental, and economic effects; some potentially serious and very long-term. The problems they pose and the need for remedial measures creates both scientific and policy challenges. This paper bridges the two domains, outlining how the atmosphere is being changed, some of the possible consequences thereof, and actions being taken to address the issue.Emissions to the atmosphere are attacking the stratospheric ozone shield, causing acidification, spreading toxic substances and increasing the greenhouse effect. Of these concerns, the global issue of greenhouse warming will have the greatest overall impact and it the most difficult to address. While some countries have taken important preventative and mitigating measures, action on the greenhouse threat generally has been restrained because of related uncertainties, possible economic upsets and the enormity of the problem. The paper ends by noting recent international initiatives toward development of needed public policies and the roles of the scientist in addressing the issue. 相似文献
53.
We present results from 27 impact experiments using porous (porosity ranging from 0.39 to 0.54) ice targets and solid ice projectiles at impact speeds ranging from 90 to 155 m/s. These targets were designed to simulate Kuiper Belt Objects (KBOs) in structure. We measured a specific energy for shattering, , of 2.1×105 erg/g for those snowball targets hit by intact ice projectiles; this is of the same order as that measured for solid ice targets. The fragment mass distribution follows a power law, although the exponent is not simply related to the largest fragment size as assumed by fragmentation models. We provide the first measurement of the three-dimensional mass-velocity distribution for disrupted ice targets and find that fragment speeds range from ∼2 to ∼20 m/s. The fraction of collisional kinetic energy that is partitioned into ejecta speeds is between 1 and 15% (although it should be noted that the lower limit is more reliable than the upper). 相似文献
54.
In recent years,researchers have devoted considerable attention to identifying the causes of urban environmental pollution.To determine whether migrant populations significantly affect urban environments,we examined the relationship between urban environmental pollutant emissions and migrant populations at the prefectural level using data obtained for 90 Chinese cities evidencing net in-migration.By dividing the permanent populations of these cities into natives and migrants in relation to the population structure,we constructed an improved Stochastic Impacts by Regression on Population,Affluence and Technology model(STIRPAT)that included not only environmental pollutant emission variables but also variables on the cities’attributes.We subsequently conducted detailed analyses of the results of the models to assess the impacts of natives and migrants on environmental pollutant emissions.The main findings of our study were as follows:1)Migrant populations have significant impacts on environmental emissions both in terms of their size and concentration.Specifically,migrant populations have negative impacts on Air Quality Index(AQI)as well as PM2.5 emissions and positive impacts on emissions of NO2 and CO2.2)The impacts of migrant populations on urban environmental pollutant emissions were 8 to 30 times weaker than that of local populations.3)Urban environmental pollutant emissions in different cities differ significantly according to variations in the industrial structures,public transportation facilities,and population densities. 相似文献
55.
On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall 总被引:3,自引:0,他引:3
The relative impacts of the ENSO and Indian Ocean dipole (IOD) events on Indian summer (June–September) monsoon rainfall at
sub-regional scales have been examined in this study. GISST datasets from 1958 to 1998, along with Willmott and Matsuura gridded
rainfall data, all India summer monsoon rainfall data, and homogeneous and sub-regional Indian rainfall datasets were used.
The spatial distribution of partial correlations between the IOD and summer rainfall over India indicates a significant impact
on rainfall along the monsoon trough regions, parts of the southwest coastal regions of India, and also over Pakistan, Afghanistan,
and Iran. ENSO events have a wider impact, although opposite in nature over the monsoon trough region to that of IOD events.
The ENSO (IOD) index is negatively (positively) correlated (significant at the 95% confidence level from a two-tailed Student
t-test) with summer monsoon rainfall over seven (four) of the eight homogeneous rainfall zones of India. During summer, ENSO
events also cause drought over northern Sri Lanka, whereas the IOD events cause surplus rainfall in its south. On monthly
scales, the ENSO and IOD events have significant impacts on many parts of India. In general, the magnitude of ENSO-related
correlations is greater than those related to the IOD. The monthly-stratified IOD variability during each of the months from
July to September has a significant impact on Indian summer monsoon rainfall variability over different parts of India, confirming
that strong IOD events indeed affect the Indian summer monsoon.
相似文献
Karumuri AshokEmail: |
56.
2019年9月,IPCC正式发布《气候变化中的海洋和冰冻圈特别报告》(SROCC),这是IPCC首次以高山地区与极区冰冻圈和海洋为主题的评估报告。报告全面评估气候变化背景下海洋和冰冻圈变化及其广泛影响与风险,其核心结论包括:气候系统变暖背景下高山地区和极区的冰冻圈普遍退缩,未来冰冻圈将继续消融,高山地区和极区将面临更高的灾害风险;20世纪70年代以来全球海洋持续增暖,未来海洋将继续变暖、加速酸化,影响海洋生物多样性并危及海洋生态系统服务功能和人类社会;近几十年全球平均海平面加速上升,未来数百年海平面仍将持续上升,极端海面事件频发将加剧沿海地区社会-生态系统的灾害风险。报告强调,采取及时、积极、协调和持久的适应与减缓行动,是有效应对海洋和冰冻圈变化,实现气候恢复力发展路径和可持续发展目标的关键所在。本研究认为,需要高度重视海洋和冰冻圈在气候系统变化中的长期和不可逆影响,强化应对气候变化紧迫性认识;高度重视我国冰冻圈和沿海地区面临的气候风险,强化适应能力建设;推动我国牵头的国际大科学计划,强化跨学科、跨领域协同创新,持续提升我国在相关领域的国际影响力和科技支撑能力。 相似文献
57.
全球山地冰冻圈变化、影响与适应 总被引:1,自引:0,他引:1
冰冻圈是高山地区不可或缺的重要组成部分,居住着全球约10%的人口。近几十年来,冰冻圈变化对山区和周围地区的自然和人类系统产生了广泛而深远的影响,对海洋也发挥着重要作用。IPCC最新发布的《气候变化中的海洋和冰冻圈特别报告》(SROCC)指出,过去几十年全球高山区气温显著升高,使山地冰冻圈发生了大范围显著退缩。观测到的山地(特别是低海拔山区)积雪期缩短、雪深和积雪覆盖范围减小;冰川物质持续亏损,其中全球最大的冰川负物质平衡出现在南安第斯山、高加索山和欧洲中部,亚洲高山区冰川负物质平衡最小;多年冻土温度升高、厚度减薄,地下冰储量减少;河、湖冰持续时间缩短。随着气候持续变暖,山地冰冻圈在21世纪仍将呈继续退缩状态。到21世纪末,低海拔山区积雪深度和积雪期将减少,冰川物质损失继续增加,多年冻土持续退化。冰冻圈变化已经或将改变山地灾害发生频率和强度,并对水资源、生态系统和经济社会系统产生重要影响。应对山地冰冻圈变化应从管理和优化利用冰冻圈资源、加强冰冻圈变化灾害风险的有效治理、增强国际合作及公约制定等适应策略着手开展,增强适应能力,从而有益于推动山地生态系统和经济社会系统可持续发展。 相似文献
58.
根据1961—2004年新疆地区55个气象站逐日降水观测资料和PRECIS (Providing Regional Climates for Impacts Studies) 区域气候影响模式(1961—2004年)逐日降水模拟资料,建立年最大降水AM(annual maximum)序列及日降水量小于0.05 mm 的年连续最长干旱天数AMCD(Annual Maximum Consecutive Dry Days)序列,分析了新疆地区降水极值序列的时空分布特征和概率分布模式。结果表明:①新疆地区降水事件的强度和概率最大的地区位于阿合奇、巴里坤、昭苏、乌鲁木齐等地,干旱事件强度和概率最大的地区位于且末、若羌、吐鲁番等地;②PRECIS区域气候影响模式模拟的新疆地区AM事件的多年平均值普遍高于观测值,且离差系数也普遍高于观测值;③PRECIS区域气候影响模式模拟结果与观测的降水极值空间分布有一定的差异,需要进行改进,但具有实际参考价值。对于实际观测的降水极值概率分布的拟合,证明了GEV分布函数能够较好地拟合降水极值的概率分布。 相似文献
59.
地球北极和南极部分地区正在经历着以变暖和冰冻圈退缩为主要特征的显著变化,不仅深刻影响着当地生态环境和社会经济,而且具有半球乃至全球效应。IPCC在2019年9月发布的《气候变化中的海洋和冰冻圈特别报告》(SROCC)第三章对极地系统变化及其影响与适应做了系统评估,主要呈现了IPCC第五次评估报告(AR5)之后极地冰冻圈、海洋、生态和社会系统相互作用的最新科学认知,探讨了降低脆弱性和风险、增强适应性和恢复力的路径。文中对SROCC第三章进行扼要解读,主要内容包括:(1)极地海洋、海冰、积雪/冻土/淡水冰、冰盖与冰川等极地系统要素过去和未来变化及其影响以及极地与中低纬度天气气候之间的关联;(2)人类响应极地系统变化的策略和不足以及应对未来变化的不确定性;(3)当前加强极地恢复力建设的主要行动及其实施进展。 相似文献
60.
Grant M.Young 《地学前缘(英文版)》2013,4(3):247-261
In more than 4 Ga of geological evolution, the Earth has twice gone through extreme climatic perturbations, when extensive glaciations occurred, together with alternating warm periods which were accompanied by atmospheric oxygenation. The younger of these two episodes of climatic oscillation preceded the Cambrian “explosion” of metazoan life forms, but similar extreme climatic conditions existed between about 2.4 and 2.2 Ga. Over long time periods, changing solar luminosity and mantle temperatures have played important roles in regulating Earth's climate but both periods of climatic upheaval are associated with supercontinents. Enhanced weathering on the orogenically and thermally buoyed supercontinents would have stripped CO2 from the atmosphere, initiating a cooling trend that resulted in continental glaciation. Ice cover prevented weathering so that CO2 built up once more, causing collapse of the ice sheets and ushering in a warm climatic episode. This negative feedback loop provides a plausible explanation for multiple glaciations of the Early and Late Proterozoic, and their intimate association with sedimentary rocks formed in warm climates. Between each glacial cycle nutrients were flushed into world oceans, stimulating photosynthetic activity and causing oxygenation of the atmosphere. Accommodation for many ancient glacial deposits was provided by rifting but escape from the climatic cycle was predicated on break-up of the supercontinent, when flooded continental margins had a moderating influence on weathering. The geochemistry of Neoproterozoic cap carbonates carries a strong hydrothermal signal, suggesting that they precipitated from deep sea waters, overturned and spilled onto continental shelves at the termination of glaciations. Paleoproterozoic (Huronian) carbonates of the Espanola Formation were probably formed as a result of ponding and evaporation in a hydrothermally influenced, restricted rift setting. Why did metazoan evolution not take off after the Great Oxidation Event of the Paleoproterozoic? The answer may lie in the huge scar left by the ~2023 Ma Vredefort impact in South Africa, and in the worldwide organic carbon-rich deposits of the Shunga Event, attesting to the near-extirpation of life and possible radical alteration of the course of Earth history. 相似文献