首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1754篇
  免费   497篇
  国内免费   339篇
测绘学   54篇
大气科学   187篇
地球物理   343篇
地质学   1244篇
海洋学   195篇
天文学   62篇
综合类   77篇
自然地理   428篇
  2024年   6篇
  2023年   12篇
  2022年   35篇
  2021年   88篇
  2020年   73篇
  2019年   87篇
  2018年   71篇
  2017年   72篇
  2016年   83篇
  2015年   86篇
  2014年   97篇
  2013年   136篇
  2012年   94篇
  2011年   96篇
  2010年   83篇
  2009年   127篇
  2008年   120篇
  2007年   129篇
  2006年   116篇
  2005年   115篇
  2004年   103篇
  2003年   84篇
  2002年   93篇
  2001年   84篇
  2000年   65篇
  1999年   63篇
  1998年   64篇
  1997年   44篇
  1996年   42篇
  1995年   44篇
  1994年   37篇
  1993年   27篇
  1992年   32篇
  1991年   17篇
  1990年   21篇
  1989年   12篇
  1988年   6篇
  1987年   5篇
  1986年   12篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1954年   1篇
排序方式: 共有2590条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
The net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a one-year record of hourly snow-height measurements at LGB69 (70°50'S, 77°04'E, 1850 m a.s.l.). east side of Lambert Glacier basin (LGB), and 4 year record at G3 (70°53'S, 69°52'E, 84 m a.s.l.), Amery Ice Shelf (AIS). The measurements were made with ultrasonic sensors mounted on automatic weather stations installed at two sites. The snow accumulation at LGB69 is approximately 70 cm. Throughout the winter, between April and September, there was little change in surface snow height (SSH) at the two sites. The negative SSH change is due to densification at LGB69, and is due to both ablation and densification at G3. The strongest accumulation at two sites occurred during the period between October and March (accounting for 101.6% at LGB69), with four episodic increasing events occurring during 2002 for LGB69, and eight events during 1999-2002 for G  相似文献   
65.
Pollen collected from snow samples on the Quelccaya Ice Cap in 2000 and 2001 reveals significant interannual variability in pollen assemblage, concentration, and provenance. Samples from 2000, a La Niña year, contain high pollen concentrations and resemble samples from the Andean forests (Yungas) to the east. Samples from 2001, an El Niño year, contain fewer pollen and resemble those from the Altiplano. We suggest that varying wind patterns under different El Niño/Southern Oscillation (ENSO) conditions may affect the processes of pollen transport over the Altiplano and on the ice cap, although confounding variables such as flowering phenology and sublimation should also be considered  相似文献   
66.
67.
This paper presents a high-resolution ice-core pollen record from the Sajama Ice Cap, Bolivia, that spans the last 400 yr. The pollen record corroborates the oxygen isotopic and ice accumulation records from the Quelccaya Ice Cap and supports the scenario that the Little Ice Age (LIA) consisted of two distinct phases—a wet period from AD 1500 to 1700, and a dry period from AD 1700 to 1880. During the dry period xerophytic shrubs expanded to replace puna grasses on the Altiplano, as suggested by a dramatic drop in the Poaceae/Asteraceae (P/A) pollen ratio. The environment around Sajama was probably similar to the desert-like shrublands of the Southern Bolivian Highlands and western Andean slopes today. The striking similarity between the Sajama and Quelccaya proxy records suggests that climatic changes during the Little Ice Age occurred synchronously across the Altiplano.  相似文献   
68.
Boxcore 99LSSL‐001 (68.095° N, 114.186° W; 211 m water depth) from Coronation Gulf represents the first decadal‐scale marine palynology and late Holocene sediment record for the southwestern part of the Northwest Passage. The record was studied for organic‐walled microfossils (dinoflagellate cysts, non‐pollen palynomorphs), pollen, terrestrial spores, and sediment characteristics. 210Pb, 137Cs, and three accelerator mass spectrometry 14C dates constrain the chronology. Three prominent palaeoenvironmental zones were identified. During the interval AD 1470–1680 (Zone I), the climate was warmer and wetter than at present, and environmental conditions were more favourable to biological activity and northward boreal forest migration, with reduced sea‐ice and a longer open‐water (growing) season. The interval AD 1680–1940 (Zone II) records sea‐ice increase, and generally cool, polar conditions during the Little Ice Age. During AD 1940–2000 (Zone III), organic microfossils indicate an extended open‐water season and decreased sea‐ice, with suggested amelioration surpassing that of Zone I. Although more marine studies are needed to place this record into an appropriate context, the succession from ameliorated (Zone I) to cooler, sea‐ice influenced conditions (Zone II) and finally to 20th‐century warming (Zone III) corresponds well with several terrestrial climatic records from the neighbouring mainland and Victoria Island, and with lower‐resolution marine records to the west. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
69.
70.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号