首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   37篇
  国内免费   52篇
测绘学   3篇
大气科学   174篇
地球物理   29篇
地质学   31篇
海洋学   2篇
天文学   7篇
综合类   4篇
自然地理   11篇
  2023年   3篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   6篇
  2017年   8篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   11篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   13篇
  2008年   16篇
  2007年   13篇
  2006年   19篇
  2005年   8篇
  2004年   8篇
  2003年   11篇
  2002年   6篇
  2001年   4篇
  2000年   8篇
  1999年   9篇
  1998年   9篇
  1997年   6篇
  1996年   2篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1980年   2篇
  1978年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
51.
A regional climate model, RegCM3, coupled with an online dust module, is used to simulate the radiative forcing (RF) and temperature response of dust aerosols over East Asia in the latest decade (2000–2009). The simulation results show that the geographical and seasonal differences of dust aerosols distribution over East Asia are obvious. There exist two extremes of dust aerosols with column burden (CB) greater than 1,000 mg/m2; one is in the Taklimakan Desert of the Xinjiang Uigur Autonomous Region, China, and the other is in the Badain Jaran Desert of the Inner Mongolian Autonomous Region, China. The maximum value of CB appears in spring, the secondary maximum in winter, and the minimum in autumn. The RF of dust aerosols has distribution characteristics similar to CB. The regional averaged RF over East Asia at the top of atmosphere (TOARF) is ?1.72 W/m2 in spring and ?1.17 W/m2 in autumn, and that at the surface (SURRF) is ?4.34 W/m2 in spring and ?2.33 W/m2 in autumn. The temperature at the surface is decreased by dust aerosols; the regional averaged temperature decrease over East Asia is 0.154 °C in spring and 0.085 °C in autumn. There are different impacts of dust aerosols on air temperature at different heights. The air temperature is decreased by dust aerosols in the lower troposphere, but the extent of the decrease diminishes with increasing height. The air temperature is in fact increased by dust aerosols at the height of 300–400 hPa in spring, which is greatly different from that in autumn.  相似文献   
52.
Highlights of fifty years of atmospheric aerosol research at Mace Head   总被引:1,自引:0,他引:1  
This paper summarises the development and principal results of fifty years of research on aerosols in the marine atmosphere at Mace Head Atmospheric Research Station on the west coast of Ireland. It concentrates on the sources, physico-chemical properties, number and mass concentrations, size range, volatility and chemical composition of aerosols in different air masses. It also examines optical properties of the aerosols and their long-range transport.  相似文献   
53.
Characteristics of aerosols in the Atmospheric Boundary Layer (ABL) obtained from a bistatic CW lidar at Trivandrum for the last one decade are used to investigate the role of ABL micro-meteorological processes in controlling the altitude distribution and size spectrum. The altitude structure of number density shows three distinct zones depending on the prevailing boundary layer feature; viz, the well-mixed region, entertainment region and upper mixing region. In the lower altitudes vertical mixing is very strong (the well-mixed region) the upper limit of which is defined as aerosol-mixing height, is closely associated with the low level inversion. The aerosol mixing height generally lies in the range 150 to 400 m showing a strong dependence on the vertical eddy mixing processes in ABL. Above this altitude, the number density decreases almost exponentially with increase in altitude with a scale height of 0.5–1.5 km. The aerosol mixing height is closely associated with the height of the Thermal Internal Boundary Layer (TIBL). Sea-spray aerosols generated as a result of the interaction of surface wind with sea surface forms an important component of mixing region aerosols at this location. This component shows a non-linear dependence on wind speed. On an average, depending on the season, the mixing region contributes about 10–30% of the columnar aerosol optical depth (AOD) at 0.5Μm wavelength. A long term increasing trend (∼ 2.8% per year) is observed in mixing region AOD from 1989 to 1997. A study on the development of the aerosols in the nocturnal mixing region shows that the convectively driven daytime altitude structure continues to persist for about 4–5 hrs. after the sunset and thereafter the altitude structure is governed by vertical structure of horizontal wind. Stratified aerosol layers associated with stratified turbulence is very common during the late night hours.  相似文献   
54.
Trace elements in tropical African savanna biomass burning aerosols   总被引:2,自引:0,他引:2  
As a part of the FOS/DECAFE experiment, aerosol particles emitted during prescribed savanna fires were collected in January 1991 at Lamto (Ivory Coast), either close to the emission or in ambient air. Analytical transmission electron microscopy pointed out the presence of sub-micrometer soots, salt condensates, vegetation relicts and soil derived particles. The samples were also analyzed for their total particulate matter (TPM) content and elemental composition by PIXE or XRF. At the emission, high concentrations of soil derived elements (Fe and Al) pointed out an intense remobilization process during the fires. Biomass burning emissions contributed to more than 90% of the measured concentrations, of P, Cl, S, K, Cu and Zn, which were found primarily in the fine fraction with the exception of P. Near the emission, K was mainly present as KCl, evolving to K2SO4 in the ambient samples. Trace elements emission factors were obtained for the first time for the African savanna burning and their annual emissions were estimated: our median K emission factor (0.78 g/kg of C) is higher than estimates for other ecosystems (0.2–0.58 g/kg of C); Zn emissions (0.008 Tg/year) account for 4 to 11% of the global anthropogenic emissions.  相似文献   
55.
The climatic effects of the atmospheric boundary aerosols are studied by the use of a three-dimensional climatemodel.Simulated results show that the climate states both at the surface and in the atmosphere change remarkably whenthe aerosols with different optical thicknesses and properties are introduced into the atmospheric boundary layer of themodel.The aerosols absorb and scatter the solar shortwave radiation,therefore,they reduce the solar energy reachingthe ground surface and decrease the surface and the soil temperatures.The temperature in the boundary layer increasesbecause of the supplementary absorption of radiation by the boundary aerosols.In the atmosphere,the temperatures atall isobaric surfaces rise up except for the 100 hPa level.The atmospheric temperatures below the 500 hPa level aredirectly influenced by the boundary aerosols,while the atmospheric temperatures above the 500 hPa level are influencedby the heating due to convective condensation and the changes in the vertical motion field.Cyclonic differential circula-tions appear over the desert areas at the low levels,and anticyclonic differential circulations exist at the upper levels inthe horizontal flow fields.The vertical motions change in correspondence with the differential circulations.The changesin precipitation are directly related to that of vertical motions.The mechanisms of climate effects of the boundaryaerosols are also discussed in this paper.  相似文献   
56.
气溶胶粒子对城市夜间边界层温度影响的模式研究   总被引:3,自引:0,他引:3  
用一维非定常模式模拟大气气溶胶粒子对城市夜间边界层大气温度场的影响。结果表明:气溶胶粒子对近地层大气地增温作用,对150m以上大气起降温作用,并削弱近地逆温层的强度。  相似文献   
57.
The airflow, cloud microphysics and gas- and aqueous-phase chemistry on Kleiner Feldberg have been modelled for the case study of the evening of 1 November 1990, in order to calculate parameters that are not easily measured in the cloud and thus to aid the interpretation of the GCE experimental data-set. An airflow model has been used to produce the updraught over complex terrain for the cloud model, with some care required to ensure realistic modelling of the strong stable stratification of the atmosphere. An extensive set of measurements has been made self-consistent and used to calculate gas and aerosol input parameters for the model. A typical run of the cloud model has calculated a peak supersaturation of 0.55% which occurs about 20 s after entering cloud where the updraught is 0.6 m s–1. This figure has been used to calculate the efficiency with which aerosol particles were scavenged; it is higher than that calculated by other methods, and produces a cloud with slightly too many droplets. A broad cloud droplet size spectrum has been produced by varying the model inputs to simulate turbulent mixing and fluctuations in cloud parameters in space and time, and the ability of mixing processes near cloud-base to produce a lower peak supersaturation is discussed. The scavenging of soluble gases by cloud droplets has been observed and departures from Henry's Law in bulk cloud-water samples seen to be caused by variation of pH across the droplet spectrum and the inability of diffusion to adjust initial distributions of highly soluble substances across the spectrum in the time available. Aqueous-phase chemistry has been found to play a minor role in the cloud as modelled, but circumstances in which these processes would be more important are identified.  相似文献   
58.
A theoretical model is presented which allows computing the efficiency with which aerosol particles of radius 0.1r10 m are collected by simple ice crystal plates of radius 50a c 640 m in air of various relative humidities, temperatures and pressures. Particle capture due to thermophoresis, diffusiophoresis and inertial impaction are considered. It is shown that the capture efficiency of an ice crystal in considerably affected by phoretic effects in the range 0.1r1 m. For aerosol particles ofr>1 m the efficiency is strongly controlled by the flow field around the crystal and the density of the aerosol material. Trajectory analysis also predicts that aerosol particles are preferentially captured by the ice crystal rim. Our theoretica results are found to agree satisfactorily with the laboratory studies presently available. Comparison shows that for the same pressure, temperature and relative humidity of the ambient air ice crystal plates are better aerosol particle scavengers than water drops.  相似文献   
59.
Atmospheric aerosols are a crucial link in the physical processes, involved in the formation and growth of precipitating clouds. Extensive aerosol measurements in surface air and in the lower troposphere were made at inland and coastal stations of different regions in India. At inland stations, the hygroscopic fraction of the total aerosol content is found to be a useful characteristic for distinguishing between the monsoon and summer airflow, as well as an indicator for a good or a badly developed monsoon. At coastal stations, however, this feature is not observed.Measurements as a function of height brought out that the aerosol varied widely in air over different seasons. During monsoon, the hygroscopic fraction was found highest at the cloud base level and was closely linked to the development of rain. Details of these investigations are presented.  相似文献   
60.
卫星对地观测中大气与地表辐射贡献的参数化   总被引:4,自引:3,他引:1  
吕达仁  段民征 《大气科学》1998,22(4):638-648
卫星对地观测定量遥感地表与大气特性是当前地球科学与应用研究的关键手段之一。在定量遥感中区分大气和地表在地-气系统对空间散射辐射中各自的贡献与作用是关键的一步。这一问题的核心是基于辐射传输方程的数值计算建立起适合应用于遥感反演中分离大气与地表贡献的参数化表达式。本文对特定的气溶胶气候类型和可见/近红外波段建立起定量的表达形式,并对表达式的物理含义和拟合精度进行了分析。最后讨论了其应用的可行性和进一步的工作。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号