首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2268篇
  免费   108篇
  国内免费   62篇
测绘学   65篇
大气科学   175篇
地球物理   438篇
地质学   1371篇
海洋学   132篇
天文学   70篇
综合类   14篇
自然地理   173篇
  2025年   11篇
  2024年   160篇
  2023年   140篇
  2022年   56篇
  2021年   164篇
  2020年   321篇
  2019年   92篇
  2018年   119篇
  2017年   180篇
  2016年   112篇
  2015年   134篇
  2014年   229篇
  2013年   354篇
  2012年   295篇
  2011年   2篇
  2010年   6篇
  2009年   4篇
  2007年   2篇
  2006年   4篇
  2005年   12篇
  2004年   11篇
  2003年   6篇
  2002年   16篇
  2001年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有2438条查询结果,搜索用时 19 毫秒
31.
The Late Jurassic Jingshan granite located at the south-eastern margin of the North China Craton contains abundant garnets which can be subdivided into three types based on texture and composition: (i) euhedral garnet in mafic biotite and garnet rich enclave (Grt I), (ii) coarse-grained garnet (Grt II) in the host granite, and (iii) small euhedral garnet in aplite (Grt III). In general, Grt I has higher FeO, CaO and lower MnO contents than Grt II. Grt III has higher Mn, but lower Ca contents than others. Grt I has lower MREE and HREE contents than Grt II. Grt III has prominent and distinctly negative Eu anomaly as well as higher MREE composition compared to the others. Systematic variations in oxygen isotope compositions are observed among the three garnet types, with δ18O values of <3.8‰ in most of Grt I, 3.8–4.7‰ in most Grt II (for inclusion-free garnets), and typically >4.7‰ in Grt III. Some of the Grt II and Grt III display two distinct zonings with cores having similar major and trace element compositions to Grt I.Cathodoluminescence (CL) images revealed that the zircons from different garnet-bearing samples possess fine-scale oscillatory zoned magmatic rims with inherited cores. In situ zircon U–Pb dating and trace element analyses show that the dark-luminescent magmatic rims all have Jurassic concordia ages (∼160 Ma) and similar trace element patterns. Most of the inherited cores also display similar Triassic ages of 210–236 Ma, which is similar to the ages of ultrahigh pressure (UHP) metamorphic rocks of the Dabie–Sulu orogen (230 Ma). In addition, Jurassic concordia ages were also found in a zircon inclusion in Grt I, implying that the Grt I was formed shortly before the main magmatic event. The age data suggest that the three different garnet types may be genetically related and modified by cogenetic magmatic events.Based on the zircon U–Pb ages from different garnet-bearing samples, the major element, trace element, oxygen isotope, and zoning textures of the three kinds of garnet we suggest that Grt I may be peritectic garnet, whereas Grt II and III are probably the results of magmatic dissolution–precipitation processes and re-equilibration of garnets with changing magmatic conditions during melting, differentiation, crystallization, and cooling within the granite. We conclude from the oxygen isotopic character of the garnets and ages of the zircons that the source rocks for the Jingshan granites are from Dabie–Sulu orogen representing the South China Craton.  相似文献   
32.
Daraban Leucogranite dykes intruded discordantly into the basal serpentinized harzburgite of the Mawat Ophiolite, Kurdistan region, NE Iraq. These coarse grained muscovite-tourmaline leucogranites are the first leucogranite dykes identified within the Mawat Ophiolite. They are mainly composed of quartz, K-feldspar, plagioclase, tourmaline, muscovite, and secondary phologopite, while zircon, xenotime, corundum, mangano-ilemnite and cassiterite occur as accessories.The A/CNK value of the granite dyke samples varies from 1.10 to 1.22 indicating a strongly peraluminous composition. CaO/Na2O ranges from 0.11 to 0.15 and Al2O3/TiO2 from 264 to 463, similar to the strongly peraluminous (SP) granites exposed in ‘high-pressure’ collision zones such as the Himalayas.Ar–Ar muscovite step-heating dating yields 37.57 ± 0.25 and 38.02 ± 0.53 Ma plateau ages for two samples which are thought to reflect either their magmatic emplacement or resetting during collision-related metamorphism. Mineral chemistry shows evidence of both primary and secondary types of muscovite, with cores favouring the magmatic interpretation and slight effects of a late syn-serpentinization fluid seen at the rims.Geochemical features of Daraban Leucogranite dykes favour a syn-collisional tectonic setting. They probably formed in response to the continental collision between Eurasia and Arabia during the initial stage of the opening of the Gulf of Aden at 37 Ma. The muscovite ages and geochemical features of Daraban Leucogranite are strong evidence for the timing of the continental collision between northeastern Arabia and Eurasia in Kurdistan region of Iraq.  相似文献   
33.
The precise constraints on the timing of metamorphism of the Changhai metamorphic complex is of great importance considering the prolonged controversial issue of the north margin and the extension of the Sulu–Dabie HP–UHP Belt. While the monazite U–Th–Pb and muscovite 40Ar/39Ar techniques are widely accepted as two of the most powerful dating tools for revealing the thermal histories of medium–low grade metamorphic rocks and precisely constraining the timing of metamorphism. The Changhai metamorphic complex at the SE Jiao–Liao–Ji Belt, North China Craton consists of a variety of pelitic schist and Grt–Ky-bearing paragneiss, and minor quartzite and marble. Analyses of mineral inclusions and back-scattered electric (BSE) images of monazites, combined with LA–ICP–MS U–Th–Pb ages for monazites and 40Ar/39Ar ages for muscovites, provide evidence of the origin and metamorphic age of the Changhai metamorphic complex. Monazites separates from various Grt–Mus schists and Grt–Ky–St–Mus paragneisses exhibit homogeneous BSE images from cores to rims, and contain inclusion assemblages of Grt + Mus + Qtz ± Ctd ± Ky in schist, and Grt + Ky + St + Mus + Pl + Kfs + Qtz inclusions in paragneiss. These inclusion assemblages are very similar to matrix minerals of host rocks, indicating they are metamorphic rather than inherited or detrital in origin. LA–ICP–MS U–Th–Pb dating reveals that monazites of schist and paragneiss have consistent 206Pb/238U ages ranging from 228.1 ± 3.8 to 218.2 ± 3.7 Ma. In contrast, muscovites from various schists show slightly older 40Ar/39Ar plateau ages of 236.1 ± 1.5 to 230.2 ± 1.2 Ma. These geochronological and petrological data conclude that the pelitic sediments have experienced a metamorphic event at the Mid–Late Triassic (236.1–218.2 Ma) rather than the Paleoproterozoic (1950–1850 Ma), commonly regarded as the Precambrian basement for the Jiao–Liao–Ji Belt. Hence, the Changhai metamorphic complex should be considered as a discrete lithotectonic group.This newly recognized Mid–Late Triassic metamorphic event (236.1–218.2 Ma) for the Changhai metamorphic complex is coeval with the HP–UHP metamorphic event (235–220 Ma) for Sulu–Dabie rocks. This leads us to speculate that the metamorphism of the Changhai complex belt along the SE margin of the North China Craton was genetically related to the Mid–Late Triassic collision of the North China and South China cratons. By the same token, the Sulu–Dabie HP–UHP Belt may have extended through Yantai, and the southern Yellow Sea, and to the southern side of the Changhai metamorphic complex.  相似文献   
34.
Rockfill is an important construction material for infrastructure engineering, such as dams, railways and airport foundations, which display a long-term post-construction settlement. However, the main mechanisms for rockfill creep and weathering influence still remain poorly understood. Particle mechanics method is used to understand the rockfill creep process under dry and wet conditions. Different bond-aging models and wetting models that represent different degradation and weakening mechanisms are compared, in order to clarify the principle and secondary mechanisms for rockfill creep and weathering influence. The results show that rockfill aggregate breakage in terms of angularity abrasion is the main source for rockfill creep under dry state. Wetting can induce additional strain mainly due to the reduction of contact friction coefficient, i.e. lubrication, and the bond strength reduction just plays a secondary role in producing additional strain. The earlier the wetting occurs during rockfill creep, the more rapidly the rockfill becomes stable. The wetting–drying cycles can induce strain evolution in a ‘stepped’ way, which is in agreement with experimental observation. The practical implications from the modeling and the outstanding issues in this study are also discussed.  相似文献   
35.
Mafic–ultramafic rocks in structurally dismembered layered intrusions comprise approximately 40% by volume of greenstones in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton. Mafic–ultramafic rocks in the Murchison Domain may be divided into five components: (i) the ~2810 Ma Meeline Suite, which includes the large Windimurra Igneous Complex; (ii) the 2800 ± 6 Ma Boodanoo Suite, which includes the Narndee Igneous Complex; (iii) the 2792 ± 5 Ma Little Gap Suite; (iv) the ~2750 Ma Gnanagooragoo Igneous Complex; and (v) the 2735–2710 Ma Yalgowra Suite of layered gabbroic sills. The intrusions are typically layered, tabular bodies of gabbroic rock with ultramafic basal units which, in places, are more than 6 km thick and up to 2500 km2 in areal extent. However, these are minimum dimensions as the intrusions have been dismembered by younger deformation. In the Windimurra and Narndee Igneous Complexes, discordant features and geochemical fractionation trends indicate multiple pulses of magma. These pulses produced several megacyclic units, each ~200 m thick. The suites are anhydrous except for the Boodanoo Suite, which contains a large volume of hornblende gabbro. They also host significant vanadium mineralisation, and at least minor Ni–Cu–PGE mineralisation. Collectively, the areal distribution, thickness and volume of mafic–ultramafic magma in these complexes is similar to that in the 2.06 Ga Bushveld Igneous Complex, and represents a major addition of mantle-derived magma to Murchison Domain crust over a 100 Ma period. All suites are demonstrably contemporaneous with packages of high-Mg tholeiitic lavas and/or felsic volcanic rocks in greenstone belts. The distribution, ages and compositions of the earlier mafic–ultramafic rocks are most consistent with genesis in a mantle plume setting.  相似文献   
36.
This paper reports on the results of an empirical evaluation that aimed to define the effectiveness and efficiency of different visual variables in depicting the Space–Time Cube’s (STC) content. Existing STC applications demonstrate that the most used visual variables are size and colour hue. Less is known, however, about their usability metrics. The research sets design criteria for STC contents, such as space–time paths, based on the cartographic design theory. The visual variables colour hue, colour value, colour saturation, size and orientation have been applied in two different use case studies. Besides, to support the three-dimensional visual environment, depth cues such as shading and transparency were considered too. User tests have been executed based on real-world problems with particular attention for the visualization strategy and data complexity. The outcomes revealed the most efficient and effective visual variables to represent data of various complexities in the STC.  相似文献   
37.
The study area is located near the town of Filippoi, north of the city of Kavala in northern Greece, known from ancient times for its rich gold mines, situated inside hydrothermal alteration zones (Fe–Mn oxide minerals). A Very High-Resolution (0.5 m pixel size) image of Worldview-2 satellite was digitally enhanced, yielding target areas of potential ore existence and lineaments. Ground-truth that followed digital image processing, revealed abandoned ancient mines, slags and ore occurrences. Also, a number of lineaments delineated on the satellite image were verified as faults.  相似文献   
38.
39.
This article examines roles, opportunities, and challenges for Indigenous land management in rapidly developing landscapes through a case study of Bunya Bunya Country Aboriginal Corporation, a not-for-profit organization on the Sunshine Coast, Queensland, Australia. An analysis of data collected through semistructured interviews, participant observation, and analysis of secondary sources reveals that Aboriginal land managers work in a variety of roles to manage issues affecting the local environment and cultural heritage sites. These efforts are challenged by the absence of Native Title and colonial land management policies, which restrict Aboriginal involvement in land management. We conclude that there is a need for alternative pathways to engage with Aboriginal land managers who cannot, or choose not to, proceed with Native Title. Decolonized decision-making tools and sustainable enterprises are viable opportunities that partially address these challenges and could deliver tangible socio-economic and cultural benefits to local Aboriginal and non-Aboriginal people.  相似文献   
40.
The Maozu Pb–Zn deposit, located on the western margin of the Yangtze Block, southwest China, is a typical carbonate-hosted deposit in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province with Pb + Zn reserves of about 2.0 million tonnes grading 4.15 wt.% Pb and 7.25 wt.% Zn. Its ore bodies are hosted in Sinian (635–541 Ma) Dengying Formation dolostone and show stratiform, vein and irregular textures. Ores are composed of sphalerite, galena, pyrite, calcite, dolomite, quartz and fluorite with massive, banded, disseminated and veined structures. The C–O–Sm–Nd isotopic compositions of hydrothermal calcites and S–Pb isotopic compositions of sulfides were analyzed to constrain the origin of the Maozu deposit. δ13CPDB and δ18OSMOW values of hydrothermal calcites range from −3.7‰ to −2.0‰ and +13.8‰ to +17.5‰, respectively, and plot near the marine carbonate rocks field in a plot of δ13CPDB vs. δ18OSMOW, with a negative correlation. It suggests that CO2 in the hydrothermal fluids was mainly originated from marine carbonate rocks, with limited influence from sedimentary organic matter. δ34SCDT values of sulfides range from +9.9‰ to +19.2‰, similar to that of Cambrian to Triassic seawater sulfate (+15‰ to +35‰) and evaporate (+15‰ to +30‰) in the Cambrian to Triassic sedimentary strata. It suggests that reduced sulfur was derived from evaporate in sedimentary strata by thermo chemical sulfate reduction. Sulfides have low radiogenic Pb isotope compositions (206Pb/204Pb = 18.129–18.375, 207Pb/204Pb = 15.640–15.686 and 208Pb/204Pb = 38.220–38.577) that plot in the field between upper crust and the orogenic belt evolution curve in the plot of 207Pb/204Pb vs. 206Pb/204Pb, and similar to that of age corrected Proterozoic basement rocks (Dongchuan and Kunyang Groups). This indicates that ore-forming metals were mainly derived from basement rocks. Hydrothermal calcite yields a Sm–Nd isotopic age of 196 ± 13 Ma, possibly reflecting the timing of Pb–Zn mineralization in the SYG province, younger than the Permian Emeishan mantle plume (∼260 Ma). All data combined suggests that hydrothermal fluids circulated through basement rocks where they picked up metals and migrated to surface, mixed with reduced sulfur-bearing fluids and precipitated metals. Ore genesis of the Maozu deposit is different from known magmatic–hydrothermal, Sedimentary Exhalative or Mississippi Valley-types, which maybe represent a unique ore deposit type, named as the SYG-type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号