首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1547篇
  免费   251篇
  国内免费   400篇
测绘学   52篇
大气科学   672篇
地球物理   594篇
地质学   304篇
海洋学   127篇
天文学   140篇
综合类   40篇
自然地理   269篇
  2024年   9篇
  2023年   41篇
  2022年   32篇
  2021年   32篇
  2020年   52篇
  2019年   91篇
  2018年   48篇
  2017年   57篇
  2016年   68篇
  2015年   73篇
  2014年   66篇
  2013年   130篇
  2012年   64篇
  2011年   81篇
  2010年   62篇
  2009年   86篇
  2008年   95篇
  2007年   119篇
  2006年   107篇
  2005年   105篇
  2004年   79篇
  2003年   84篇
  2002年   72篇
  2001年   57篇
  2000年   73篇
  1999年   59篇
  1998年   67篇
  1997年   43篇
  1996年   51篇
  1995年   34篇
  1994年   35篇
  1993年   29篇
  1992年   16篇
  1991年   15篇
  1990年   6篇
  1989年   15篇
  1988年   16篇
  1987年   8篇
  1986年   7篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
排序方式: 共有2198条查询结果,搜索用时 15 毫秒
91.

利用国际卫星云气候计划(International Satellite Cloud Climate Program,简称ISCCP)提供的1998—2007年共10 a的深对流路径跟踪资料,统计分析了影响江淮地区对流系统(Convection system,简称CS)的时空分布及其参数特征。结果表明:影响江淮地区的CS主要集中在春夏两季,大多生成于江淮本地及我国中西部地区,呈现以江淮地区为中心的带状分布特征,越靠近江淮区域CS分布越为密集。依据源地不同,将影响江淮地区的CS分为5类,受气候条件与地形地貌的共同作用,各源地CS参数特征差异显著,总体来说CS的水平尺度越大,其生命史、对流云团(Convective clusters,简称CC)数目及水平云温度梯度也越大。其中江淮中心区域(MID)区域CS水平尺度、生命史和CC数目的平均值均为最小;东南(SE)区域CS生命周期以中长周期为主,水平尺度、最大对流比和云温度梯度的平均值最大。梅雨期内江淮地区对流活动频繁,CS的水平尺度大、生命史长、CC数目多。

  相似文献   
92.
聂云  周继先  顾欣  周艳  杜小玲 《暴雨灾害》2018,28(5):445-454

利用常规气象观测资料、区域自动站资料、FY-2C云顶亮温(TBB)资料及NCEP 1°×1°再分析资料,对2015年6月17-18日发生在黔东南地区的典型梅雨锋西段暴雨进行了诊断分析。结果表明(:1)在500 hPa两槽一脊单阻型梅雨形势下,冷空气沿贝加尔湖阻塞高压东侧南下与来自南海、孟加拉湾的暖湿气流在黔东南交汇,500 hPa短波槽东移促使低空切变线东移南压和地面梅雨锋发展,配合200 hPa南亚高压东部脊附近的\  相似文献   

93.

利用常规观测和自动站加密资料、卫星云图、雷达及NCEP再分析资料,诊断分析1521号台风“杜鹃”登陆福建减弱过程中造成宁波异常强降水原因,结果表明:本次宁波强降雨是由“杜鹃”减弱后的外围云系在加强西进的副高边缘通过对流发展引发的,伴有强雷电,具有低质心降水特点;中低层大范围、长时间持续的水汽能量输送给本次强降水提供了必要的水汽条件,水汽通量散度出现负值、极小值、变大与强降水的开始、增幅、结束有提前12 h的预示期;能量场的梯度大小和位置对台风暴雨的预报有较好的指示作用,强降水发生在能量场梯度大值区出现12 h之后;本次大暴雨过程发生在对流不稳定条件下,并伴有和暖湿气流相联系的湿位涡水平分量的发展,触发了垂直涡度的增长;中尺度辐合线的位置和强度对未来1 h降水预报有非常好的指示作用。

  相似文献   
94.
空间尺度转换是近年来区域生态水文研究领域的一个基本研究问题。其需要主要是源于模型的输入数据与所能提供的数据空间尺度不一致以及模型所代表的地表过程空间尺度与所观测的地表过程空间尺度不吻合。综述了目前区域生态水文模拟研究中常用的空间尺度转换研究方法,包括向上尺度转换和向下尺度转换。详细论述了2种向下尺度转换方法: 统计学经验模型和动态模型。前者是通过将GCM大尺度数据与长期的历史观测数据比较从而建立统计学相关模型, 然后利用这个统计学经验模型进行向下的空间尺度转换. 然而动态模型并不直接对GCM数据进行向下尺度的转换,而是对与GCM进行动态耦合的区域气候模型(RCM) 的输出数据进行空间尺度转换. 通常后者所获得的数据精度要比前者高,但是一个主要缺点就是并不是全球所有的研究区域都有对应的RCM。还详细论述了2种向上尺度转换方法: 统计学经验模型和斑块模型。前者是建立一个能代表小尺度信息在大尺度上分布的密度分布概率函数, 然后利用这个函数在所需的大尺度上进行积分而求得大尺度所需的信息。而后者是根据相似性最大化原则将大尺度划分为若干个可操作的小尺度斑块,然后将计算的每个小尺度斑块的信息平均化得到大尺度所需的信息。通常在计算这种斑块化的小尺度信息的时候,对每个小尺度也会采用统计学经验模型来计算代表整个斑块小尺度的信息。建议用斑块模型与统计学经验模型相集合的方法来实现向上的空间尺度转换  相似文献   
95.
利用2016—2021年ECWMF集合预报资料、浙江自动站实况资料等,计算浙江短时强降水、雷暴大风和冰雹等强对流天气相关物理量的极端天气预报指数(EFI:Extreme Forecast Index),分析EFI分布特征,并构建了分类强对流预报模型。结果表明:强对流天气与物理量的EFI有密切联系,发生短时强降水时,对流有效位能、整层可降水量、850 hPa与500 hPa温差和位温差的EFI较大,而垂直风切变的EFI为负值,因而较小的垂直风切变更有利于出现极端降水;发生雷暴大风和冰雹时,对流有效位能、850 hPa与500 hPa温差和位温差以及850 hPa温度露点差的EFI较大,700 hPa露点温度的EFI为负值,与上层干冷下层暖湿的有利层结条件有关。利用支持向量机多分类方法,将强对流天气相关物理量的EFI作为特征值开展训练,构建的预报模型对于非局地强对流天气有较好的预报效果,其中短时强降水的误判率明显低于雷暴大风。  相似文献   
96.
14时探空在改进北京地区对流天气潜势预报中的作用   总被引:4,自引:0,他引:4  
廖晓农  俞小鼎  谭一洲 《气象》2007,33(3):28-32
为了探讨增加14时探空对于对流天气短时临近潜势预报的作用。用1995—2005年北京地区22个人工观测站资料统计了夏季常见的对流天气日变化特征。结果表明,41.6%的雷阵雨、61.3%的冰雹以及58.5%的雷暴大风发生在15—-20时之间。利用探空资料计算并对比了出现在2006年7—9月14时探空释放后到20时期问11个雷暴个例的08时和14时BCAPE、DCAPE、CIN等对流参数。结果表明,对于多数个例,在判断对流是否发生时14时探空优于08时。因此,增加14时探空对于提高对流天气有无预报准确率有帮助。  相似文献   
97.
海河流域一次大到暴雨天气过程的预报分析   总被引:3,自引:0,他引:3  
吕江津  王庆元  杨晓君 《气象》2007,33(10):52-60
利用数值预报、常规天气图、各种物理量场、卫星云图、雷达资料等,对2005年7月22—24日影响海河流域的典型暴雨天气过程进行了综合分析。该过程是由高空槽、副热带高压边缘的暖湿气流和5号台风海棠减弱后的低气压云系的共同作用下产生的;其触发机制是冷空气从近地层楔入暖空气中,在高温高湿、层结不稳定等诸多有利条件下,冷空气前沿的上升气流在暖区激发出几个较旺盛的中小尺度的强对流云团造成此次的降水过程;数值预报在对流层中部冷平流入侵海河流域的时间和地点,对于强降水出现的时间和落区预报有一定的指示意义,日本模式和T213在此次海河流域强降水的落区预报上存在优势,德国模式在强降水量级的预报上最接近实况,但三家数值模式预报西太平洋副高西伸的位置不够准确,导致海河流域的降水预报的时空分布有一定误差。  相似文献   
98.
本文分别在直角坐标系和柱坐标系下,研究瑞利数从104逐渐增大到107对热对流的影响,数值计算结果表明:瑞利数越大,地幔柱越窄,地幔柱上升速度也越快;源自上地幔的地幔柱半径的范围为90到210 km.根据峨眉山内带的半径推算出地幔的黏性系数约为3.8×1021 Pa·s,地幔柱平均流动速度为2.5 cm/a.  相似文献   
99.
100.
We study the scale dependence of the saturated hydraulic conductivity Ks through the effective porosity ne by means of a newly developed power‐law model (PLM) which allows to use simultaneously measurements at different scales. The model is expressed as product between a single PLM (capturing the impact of the dominating scale) and a characteristic function κ? accounting for the correction because of the other scale(s). The simple (closed form) expression of the κ?‐function enables one to easily identify the scales which are relevant for Ks. The proposed model is then applied to a set of real data taken at the experimental site of Montalto Uffugo (Italy), and we show that in this case two (i.e. laboratory and field) scales appear to be the main ones. The implications toward an important application (solute transport) in Hydrology are finally discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号