首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4000篇
  免费   693篇
  国内免费   1117篇
测绘学   1383篇
大气科学   2200篇
地球物理   412篇
地质学   296篇
海洋学   562篇
天文学   249篇
综合类   402篇
自然地理   306篇
  2024年   38篇
  2023年   79篇
  2022年   175篇
  2021年   217篇
  2020年   221篇
  2019年   221篇
  2018年   144篇
  2017年   242篇
  2016年   242篇
  2015年   257篇
  2014年   300篇
  2013年   369篇
  2012年   344篇
  2011年   271篇
  2010年   230篇
  2009年   254篇
  2008年   266篇
  2007年   306篇
  2006年   246篇
  2005年   213篇
  2004年   203篇
  2003年   191篇
  2002年   121篇
  2001年   120篇
  2000年   90篇
  1999年   62篇
  1998年   67篇
  1997年   62篇
  1996年   45篇
  1995年   40篇
  1994年   46篇
  1993年   34篇
  1992年   23篇
  1991年   20篇
  1990年   13篇
  1989年   10篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1954年   2篇
排序方式: 共有5810条查询结果,搜索用时 125 毫秒
101.
沙尘天气等对西安市空气污染影响的研究   总被引:7,自引:10,他引:7  
通过对西安市1981—2000年TSP、SO2和NOx年平均浓度资料,1998—2000年周报和日报环境监测资料以及相应的地面、高空常规气象观测资料的统计分析,研究了该市空气污染的时间变化特点以及沙尘天气等几种气象条件对其浓度变化的影响。结果表明:(1)颗粒污染物(TSP和PM10)是西安市的首要污染物,其次是SO2。1981—2000年期间,TSP年平均浓度降低了75%,SO2年平均浓度降低了77%,NOx年平均浓度总体上变化不大;这三种污染物月平均浓度的年变化都呈单周期型,冬季1月份最高,夏季最低(TSP是7月份最低,SO2和NOx是8月份最低)。(2)2001年春季3~4月份沙尘天气的频繁发生,使西安市空气污染日出现全年的第二个多发期(23d·月-1),这有别于正常年份仅在冬季1月份出现一个浓度峰值的特点;强沙尘暴天气过程会使西安市PM10浓度在非常短的时间内提高3倍左右,造成严重的颗粒物污染。(3)西安市冬半年出现轻度污染以上级别的几率明显大于夏半年。影响西安市的地面天气系统可归纳为12类,当受不同天气系统控制时,其污染状况会有较大差异。(4)西安市一年四季都有逆温存在,100m平均逆温强度为0.90℃;全年以低层逆温出现日数最多,但冬季贴地逆温出现日数最多,厚度最厚,强度最大,是造成西安市冬季空气污染严重的最重要气象因素之一。(5)西安  相似文献   
102.
This article presents an econometric analysis of land‐cover change in western Honduras. Ground‐truthed satellite image analysis indicates that between 1987 and 1996 net reforestation occurred in the 1,015‐km2 study region. While some reforestation can be attributed to a 1987 ban on logging, the area of reforestation greatly exceeds that of previously clear‐cut areas. Further, new area was also deforested between 1987 and 1996. Thus, the observed land‐cover changes represent a complex mosaic of changing land‐use patterns across time and space. The analysis contributes to the literature on land‐cover change modeling in that: (1) it compares two econometric approaches to capture complex and often bidirectional changes in land cover from 1987 to 1996 as a function of agricultural suitability and transportation costs, and (2) it addresses techniques to identify and correct for spatial autocorrelation in a categorical regression framework.  相似文献   
103.
104.
通过对侯马近14a酸雨观测资料分析,发现侯马出现酸雨的概率较大,强度较强,时间变化特征明显,与气象条件关系密切。  相似文献   
105.
New satellite technology to measure changes in the Earth’s gravity field gives new possibilities to detect layers of low viscosity inside the Earth. We used density models for the Earth mantle based on slab history as well as on tomography and fitted the viscosity by comparison of predicted gravity to the new CHAMP gravity model. We first confirm that the fit to the observed geoid is insensitive to the presence of a low viscosity anomaly in the upper mantle as long as the layer is thin ( 200 km) and the viscosity reduction is less than two orders of magnitude. Then we investigated the temporal change in geoid by comparing two stages of slablet sinking based on subduction history or by advection of tomography derived densities and compared the spectra of the geoid change for cases with and without a low viscosity layer, but about equal fit to the observed geoid. The presence of a low viscosity layer causes relaxation at smaller wavelength and thus leads to a spectrum with relatively stronger power in higher modes and a peak around degrees 5 and 6. Comparing the spectra to the expected degree resolution for GRACE data for a 5 years mission duration shows a weak possibility to detect changes in the Earth’s gravity field due to large scale mantle circulation, provided that other causes of geoid changes can be taken into account with sufficient accuracy. A discrimination between the two viscosity cases, however, demands a new generation of gravity field observing satellites.  相似文献   
106.
107.
IGN is in charge of the installation and maintenance of the DORIS orbit determination network. More recently, in collaboration with JPL, precise geodetic computations were performed. The goal of this paper is to recall the various historic contributions of IGN to the DORIS system in their international context and then to describe a new estimation technique developed for a multi-satellite mode, making full profit of a better modeling for satellites and ground clocks as well as tropospheric correction parameters. Derived geodetic results demonstrate a precision in the order of 1 cm for station positions. To cite this article: P. Willis et al., C. R. Geoscience 337 (2005).  相似文献   
108.
The accurate measurement of precipitation is essential to understanding regional hydrological processes and hydrological cycling. Quantification of precipitation over remote regions such as the Tibetan Plateau is highly unreliable because of the scarcity of rain gauges. The objective of this study is to evaluate the performance of the satellite precipitation product of tropical rainfall measuring mission (TRMM) 3B42 v7 at daily, weekly, monthly, and seasonal scales. Comparison between TRMM grid precipitation and point‐based rain gauge precipitation was conducted using nearest neighbour and bilinear weighted interpolation methods. The results showed that the TRMM product could not capture daily precipitation well due to some rainfall events being missed at short time scales but provided reasonably good precipitation data at weekly, monthly, and seasonal scales. TRMM tended to underestimate the precipitation of small rainfall events (less than 1 mm/day), while it overestimated the precipitation of large rainfall events (greater than 20 mm/day). Consequently, TRMM showed better performance in the summer monsoon season than in the winter season. Through comparison, it was also found that the bilinear weighted interpolation method performs better than the nearest neighbour method in TRMM precipitation extraction.  相似文献   
109.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
110.
An understanding of temporal evolution of snow on sea ice at different spatial scales is essential for improvement of snow parameterization in sea ice models. One of the problems we face, however, is that long‐term climate data are routinely available for land and not for sea ice. In this paper, we examine the temporal evolution of snow over smooth land‐fast first‐year sea ice using observational and modelled data. Changes in probability density functions indicate that depositional and drifting events control the evolution of snow distribution. Geostatistical analysis suggests that snowdrifts increased over the study period, and the orientation was related to the meteorological conditions. At the microscale, the temporal evolution of the snowdrifts was a product of infilling in the valleys between drifts. Results using two shore‐based climate reporting stations (Paulatuk and Tuktoyuktuk, NWT) suggest that on‐ice air temperature and relative humidity can be estimated using air temperature recorded at either station. Wind speed, direction and precipitation on ice cannot be accurately estimated using meteorological data from either station. The temporal evolution of snow distribution over smooth land‐fast sea ice was modelled using SnowModel and four different forcing regimes. The results from these model runs indicate a lack of agreement between observed distribution and model outputs. The reasons for these results are lack of meteorological measurements prior to the end of January, lack of spatially adequate surface topography and discrepancies between meteorological variables on land and ice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号